Properties

Label 98.8.a.e
Level $98$
Weight $8$
Character orbit 98.a
Self dual yes
Analytic conductor $30.614$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [98,8,Mod(1,98)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(98, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("98.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.6137324974\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{22}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 22 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4\sqrt{22}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8 q^{2} + 3 \beta q^{3} + 64 q^{4} + 7 \beta q^{5} - 24 \beta q^{6} - 512 q^{8} + 981 q^{9} - 56 \beta q^{10} - 4340 q^{11} + 192 \beta q^{12} - 631 \beta q^{13} + 7392 q^{15} + 4096 q^{16} - 1878 \beta q^{17} + \cdots - 4257540 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16 q^{2} + 128 q^{4} - 1024 q^{8} + 1962 q^{9} - 8680 q^{11} + 14784 q^{15} + 8192 q^{16} - 15696 q^{18} + 69440 q^{22} + 23856 q^{23} - 121754 q^{25} + 455828 q^{29} - 118272 q^{30} - 65536 q^{32}+ \cdots - 8515080 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.69042
4.69042
−8.00000 −56.2850 64.0000 −131.332 450.280 0 −512.000 981.000 1050.65
1.2 −8.00000 56.2850 64.0000 131.332 −450.280 0 −512.000 981.000 −1050.65
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.8.a.e 2
7.b odd 2 1 inner 98.8.a.e 2
7.c even 3 2 98.8.c.l 4
7.d odd 6 2 98.8.c.l 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
98.8.a.e 2 1.a even 1 1 trivial
98.8.a.e 2 7.b odd 2 1 inner
98.8.c.l 4 7.c even 3 2
98.8.c.l 4 7.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 3168 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(98))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 8)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 3168 \) Copy content Toggle raw display
$5$ \( T^{2} - 17248 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T + 4340)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 140152672 \) Copy content Toggle raw display
$17$ \( T^{2} - 1241463168 \) Copy content Toggle raw display
$19$ \( T^{2} - 28191328 \) Copy content Toggle raw display
$23$ \( (T - 11928)^{2} \) Copy content Toggle raw display
$29$ \( (T - 227914)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 70438479232 \) Copy content Toggle raw display
$37$ \( (T + 390318)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 930644352 \) Copy content Toggle raw display
$43$ \( (T + 231524)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 5592644992 \) Copy content Toggle raw display
$53$ \( (T + 1274498)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 1947765870688 \) Copy content Toggle raw display
$61$ \( T^{2} - 5235990625888 \) Copy content Toggle raw display
$67$ \( (T + 2067860)^{2} \) Copy content Toggle raw display
$71$ \( (T - 203056)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 8163455500288 \) Copy content Toggle raw display
$79$ \( (T - 3546040)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 83612791725408 \) Copy content Toggle raw display
$89$ \( T^{2} - 23401475891200 \) Copy content Toggle raw display
$97$ \( T^{2} - 25238672060800 \) Copy content Toggle raw display
show more
show less