Properties

Label 98.8.c.k
Level $98$
Weight $8$
Character orbit 98.c
Analytic conductor $30.614$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [98,8,Mod(67,98)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(98, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("98.67");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 98.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.6137324974\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{1969})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 493x^{2} + 492x + 242064 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (8 \beta_1 - 8) q^{2} + ( - \beta_{2} + 35 \beta_1) q^{3} - 64 \beta_1 q^{4} + ( - 9 \beta_{3} - 9 \beta_{2} + \cdots + 63) q^{5} + ( - 8 \beta_{3} - 280) q^{6} + 512 q^{8} + ( - 70 \beta_{3} - 70 \beta_{2} + \cdots - 1007) q^{9}+ \cdots + ( - 246582 \beta_{3} - 19088550) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{2} + 70 q^{3} - 128 q^{4} + 126 q^{5} - 1120 q^{6} + 2048 q^{8} - 2014 q^{9} + 1008 q^{10} + 3420 q^{11} + 4480 q^{12} + 12796 q^{13} - 62064 q^{15} - 8192 q^{16} - 38472 q^{17} - 16112 q^{18}+ \cdots - 76354200 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 493x^{2} + 492x + 242064 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + 493\nu^{2} - 493\nu + 242064 ) / 242556 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 493\nu^{2} + 485605\nu - 242064 ) / 242556 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{3} + 1477 ) / 493 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + \beta_{2} + 985\beta _1 - 985 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 493\beta_{3} - 1477 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/98\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1 + \beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
11.3434 19.6473i
−10.8434 + 18.7812i
11.3434 + 19.6473i
−10.8434 18.7812i
−4.00000 6.92820i −4.68671 + 8.11762i −32.0000 + 55.4256i 231.180 + 400.416i 74.9873 0 512.000 1049.57 + 1817.91i 1849.44 3203.33i
67.2 −4.00000 6.92820i 39.6867 68.7394i −32.0000 + 55.4256i −168.180 291.297i −634.987 0 512.000 −2056.57 3562.08i −1345.44 + 2330.38i
79.1 −4.00000 + 6.92820i −4.68671 8.11762i −32.0000 55.4256i 231.180 400.416i 74.9873 0 512.000 1049.57 1817.91i 1849.44 + 3203.33i
79.2 −4.00000 + 6.92820i 39.6867 + 68.7394i −32.0000 55.4256i −168.180 + 291.297i −634.987 0 512.000 −2056.57 + 3562.08i −1345.44 2330.38i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.8.c.k 4
7.b odd 2 1 98.8.c.g 4
7.c even 3 1 98.8.a.g 2
7.c even 3 1 inner 98.8.c.k 4
7.d odd 6 1 14.8.a.c 2
7.d odd 6 1 98.8.c.g 4
21.g even 6 1 126.8.a.i 2
28.f even 6 1 112.8.a.g 2
35.i odd 6 1 350.8.a.j 2
35.k even 12 2 350.8.c.k 4
56.j odd 6 1 448.8.a.l 2
56.m even 6 1 448.8.a.s 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.8.a.c 2 7.d odd 6 1
98.8.a.g 2 7.c even 3 1
98.8.c.g 4 7.b odd 2 1
98.8.c.g 4 7.d odd 6 1
98.8.c.k 4 1.a even 1 1 trivial
98.8.c.k 4 7.c even 3 1 inner
112.8.a.g 2 28.f even 6 1
126.8.a.i 2 21.g even 6 1
350.8.a.j 2 35.i odd 6 1
350.8.c.k 4 35.k even 12 2
448.8.a.l 2 56.j odd 6 1
448.8.a.s 2 56.m even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 70T_{3}^{3} + 5644T_{3}^{2} + 52080T_{3} + 553536 \) acting on \(S_{8}^{\mathrm{new}}(98, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 8 T + 64)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} - 70 T^{3} + \cdots + 553536 \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 24186470400 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 802914388033536 \) Copy content Toggle raw display
$13$ \( (T^{2} - 6398 T - 60101048)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 12\!\cdots\!16 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 35\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( (T^{2} - 159576 T - 4918678740)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 19\!\cdots\!04 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 24\!\cdots\!36 \) Copy content Toggle raw display
$41$ \( (T^{2} + 64848 T - 74003569668)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 1527964 T + 583387157728)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 29\!\cdots\!64 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 62\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 19\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 33\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( (T^{2} + 619272 T - 850548584448)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 28\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( (T^{2} + \cdots - 35507978523864)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 40\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots - 2847474625940)^{2} \) Copy content Toggle raw display
show more
show less