Properties

Label 98.8.c.a
Level $98$
Weight $8$
Character orbit 98.c
Analytic conductor $30.614$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [98,8,Mod(67,98)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(98, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("98.67");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 98.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.6137324974\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8 \zeta_{6} q^{2} + (66 \zeta_{6} - 66) q^{3} + (64 \zeta_{6} - 64) q^{4} - 400 \zeta_{6} q^{5} + 528 q^{6} + 512 q^{8} - 2169 \zeta_{6} q^{9} + (3200 \zeta_{6} - 3200) q^{10} + (40 \zeta_{6} - 40) q^{11} + \cdots + 86760 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} - 66 q^{3} - 64 q^{4} - 400 q^{5} + 1056 q^{6} + 1024 q^{8} - 2169 q^{9} - 3200 q^{10} - 40 q^{11} - 4224 q^{12} + 8904 q^{13} + 52800 q^{15} - 4096 q^{16} + 36502 q^{17} - 17352 q^{18} - 46222 q^{19}+ \cdots + 173520 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/98\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
0.500000 + 0.866025i
0.500000 0.866025i
−4.00000 6.92820i −33.0000 + 57.1577i −32.0000 + 55.4256i −200.000 346.410i 528.000 0 512.000 −1084.50 1878.41i −1600.00 + 2771.28i
79.1 −4.00000 + 6.92820i −33.0000 57.1577i −32.0000 55.4256i −200.000 + 346.410i 528.000 0 512.000 −1084.50 + 1878.41i −1600.00 2771.28i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.8.c.a 2
7.b odd 2 1 98.8.c.b 2
7.c even 3 1 98.8.a.c 1
7.c even 3 1 inner 98.8.c.a 2
7.d odd 6 1 14.8.a.b 1
7.d odd 6 1 98.8.c.b 2
21.g even 6 1 126.8.a.c 1
28.f even 6 1 112.8.a.d 1
35.i odd 6 1 350.8.a.d 1
35.k even 12 2 350.8.c.b 2
56.j odd 6 1 448.8.a.i 1
56.m even 6 1 448.8.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.8.a.b 1 7.d odd 6 1
98.8.a.c 1 7.c even 3 1
98.8.c.a 2 1.a even 1 1 trivial
98.8.c.a 2 7.c even 3 1 inner
98.8.c.b 2 7.b odd 2 1
98.8.c.b 2 7.d odd 6 1
112.8.a.d 1 28.f even 6 1
126.8.a.c 1 21.g even 6 1
350.8.a.d 1 35.i odd 6 1
350.8.c.b 2 35.k even 12 2
448.8.a.b 1 56.m even 6 1
448.8.a.i 1 56.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 66T_{3} + 4356 \) acting on \(S_{8}^{\mathrm{new}}(98, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$3$ \( T^{2} + 66T + 4356 \) Copy content Toggle raw display
$5$ \( T^{2} + 400T + 160000 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 40T + 1600 \) Copy content Toggle raw display
$13$ \( (T - 4452)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 1332396004 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 2136473284 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 11067040000 \) Copy content Toggle raw display
$29$ \( (T + 126334)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 29228689296 \) Copy content Toggle raw display
$37$ \( T^{2} + 20954 T + 439070116 \) Copy content Toggle raw display
$41$ \( (T + 318486)^{2} \) Copy content Toggle raw display
$43$ \( (T - 77744)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 495216208656 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 2570500345284 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 1373335547236 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 4280231352384 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 988568855824 \) Copy content Toggle raw display
$71$ \( (T - 33280)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 8829538874116 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 5646174364224 \) Copy content Toggle raw display
$83$ \( (T - 2122358)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 47891188759716 \) Copy content Toggle raw display
$97$ \( (T + 4952710)^{2} \) Copy content Toggle raw display
show more
show less