Properties

Label 98.8.c.l
Level $98$
Weight $8$
Character orbit 98.c
Analytic conductor $30.614$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [98,8,Mod(67,98)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(98, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("98.67");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 98.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.6137324974\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 22x^{2} + 484 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8 \beta_{2} q^{2} + 3 \beta_1 q^{3} + ( - 64 \beta_{2} - 64) q^{4} + ( - 7 \beta_{3} - 7 \beta_1) q^{5} - 24 \beta_{3} q^{6} - 512 q^{8} + 981 \beta_{2} q^{9} - 56 \beta_1 q^{10} + (4340 \beta_{2} + 4340) q^{11}+ \cdots - 4257540 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{2} - 128 q^{4} - 2048 q^{8} - 1962 q^{9} + 8680 q^{11} + 29568 q^{15} - 8192 q^{16} + 15696 q^{18} + 138880 q^{22} - 23856 q^{23} + 121754 q^{25} + 911656 q^{29} + 118272 q^{30} + 65536 q^{32}+ \cdots - 17030160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 22x^{2} + 484 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 4\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 22 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{3} ) / 11 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 22\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 11\beta_{3} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/98\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
−2.34521 + 4.06202i
2.34521 4.06202i
−2.34521 4.06202i
2.34521 + 4.06202i
4.00000 + 6.92820i −28.1425 + 48.7442i −32.0000 + 55.4256i −65.6658 113.737i −450.280 0 −512.000 −490.500 849.571i 525.327 909.892i
67.2 4.00000 + 6.92820i 28.1425 48.7442i −32.0000 + 55.4256i 65.6658 + 113.737i 450.280 0 −512.000 −490.500 849.571i −525.327 + 909.892i
79.1 4.00000 6.92820i −28.1425 48.7442i −32.0000 55.4256i −65.6658 + 113.737i −450.280 0 −512.000 −490.500 + 849.571i 525.327 + 909.892i
79.2 4.00000 6.92820i 28.1425 + 48.7442i −32.0000 55.4256i 65.6658 113.737i 450.280 0 −512.000 −490.500 + 849.571i −525.327 909.892i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
7.c even 3 1 inner
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.8.c.l 4
7.b odd 2 1 inner 98.8.c.l 4
7.c even 3 1 98.8.a.e 2
7.c even 3 1 inner 98.8.c.l 4
7.d odd 6 1 98.8.a.e 2
7.d odd 6 1 inner 98.8.c.l 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
98.8.a.e 2 7.c even 3 1
98.8.a.e 2 7.d odd 6 1
98.8.c.l 4 1.a even 1 1 trivial
98.8.c.l 4 7.b odd 2 1 inner
98.8.c.l 4 7.c even 3 1 inner
98.8.c.l 4 7.d odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 3168T_{3}^{2} + 10036224 \) acting on \(S_{8}^{\mathrm{new}}(98, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 8 T + 64)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 3168 T^{2} + 10036224 \) Copy content Toggle raw display
$5$ \( T^{4} + 17248 T^{2} + 297493504 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 4340 T + 18835600)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 140152672)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 15\!\cdots\!24 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 794750974403584 \) Copy content Toggle raw display
$23$ \( (T^{2} + 11928 T + 142277184)^{2} \) Copy content Toggle raw display
$29$ \( (T - 227914)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 49\!\cdots\!24 \) Copy content Toggle raw display
$37$ \( (T^{2} - 390318 T + 152348141124)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 930644352)^{2} \) Copy content Toggle raw display
$43$ \( (T + 231524)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 31\!\cdots\!64 \) Copy content Toggle raw display
$53$ \( (T^{2} + \cdots + 1624345152004)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 37\!\cdots\!44 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 27\!\cdots\!44 \) Copy content Toggle raw display
$67$ \( (T^{2} + \cdots + 4276044979600)^{2} \) Copy content Toggle raw display
$71$ \( (T - 203056)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 66\!\cdots\!44 \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots + 12574399681600)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 83612791725408)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 54\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( (T^{2} - 25238672060800)^{2} \) Copy content Toggle raw display
show more
show less