Properties

Label 98.8.c.m
Level $98$
Weight $8$
Character orbit 98.c
Analytic conductor $30.614$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [98,8,Mod(67,98)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(98, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("98.67");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 98.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.6137324974\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{949})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 238x^{2} + 237x + 56169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 8 \beta_1 + 8) q^{2} + (\beta_{2} + 28 \beta_1) q^{3} - 64 \beta_1 q^{4} + ( - 14 \beta_{3} - 14 \beta_{2} + \cdots - 7) q^{5} + ( - 8 \beta_{3} + 224) q^{6} - 512 q^{8} + (56 \beta_{3} + 56 \beta_{2} + \cdots + 454) q^{9}+ \cdots + (31094 \beta_{3} + 10985632) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{2} + 56 q^{3} - 128 q^{4} - 14 q^{5} + 896 q^{6} - 2048 q^{8} + 908 q^{9} + 112 q^{10} - 2408 q^{11} + 3584 q^{12} - 21448 q^{13} + 52360 q^{15} - 8192 q^{16} - 35098 q^{17} - 7264 q^{18} - 2408 q^{19}+ \cdots + 43942528 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 238x^{2} + 237x + 56169 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + 238\nu^{2} - 238\nu + 56169 ) / 56406 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 238\nu^{2} + 113050\nu - 56169 ) / 56406 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 356 ) / 119 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + \beta_{2} + 475\beta _1 - 475 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 119\beta_{3} - 356 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/98\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1 + \beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
−7.45146 + 12.9063i
7.95146 13.7723i
−7.45146 12.9063i
7.95146 + 13.7723i
4.00000 + 6.92820i −1.40292 + 2.42993i −32.0000 + 55.4256i −219.141 379.563i −22.4467 0 −512.000 1089.56 + 1887.18i 1753.13 3036.51i
67.2 4.00000 + 6.92820i 29.4029 50.9274i −32.0000 + 55.4256i 212.141 + 367.439i 470.447 0 −512.000 −635.564 1100.83i −1697.13 + 2939.51i
79.1 4.00000 6.92820i −1.40292 2.42993i −32.0000 55.4256i −219.141 + 379.563i −22.4467 0 −512.000 1089.56 1887.18i 1753.13 + 3036.51i
79.2 4.00000 6.92820i 29.4029 + 50.9274i −32.0000 55.4256i 212.141 367.439i 470.447 0 −512.000 −635.564 + 1100.83i −1697.13 2939.51i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.8.c.m 4
7.b odd 2 1 14.8.c.b 4
7.c even 3 1 98.8.a.d 2
7.c even 3 1 inner 98.8.c.m 4
7.d odd 6 1 14.8.c.b 4
7.d odd 6 1 98.8.a.f 2
21.c even 2 1 126.8.g.d 4
21.g even 6 1 126.8.g.d 4
28.d even 2 1 112.8.i.b 4
28.f even 6 1 112.8.i.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.8.c.b 4 7.b odd 2 1
14.8.c.b 4 7.d odd 6 1
98.8.a.d 2 7.c even 3 1
98.8.a.f 2 7.d odd 6 1
98.8.c.m 4 1.a even 1 1 trivial
98.8.c.m 4 7.c even 3 1 inner
112.8.i.b 4 28.d even 2 1
112.8.i.b 4 28.f even 6 1
126.8.g.d 4 21.c even 2 1
126.8.g.d 4 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 56T_{3}^{3} + 3301T_{3}^{2} + 9240T_{3} + 27225 \) acting on \(S_{8}^{\mathrm{new}}(98, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 8 T + 64)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} - 56 T^{3} + \cdots + 27225 \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 34579262025 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 18\!\cdots\!25 \) Copy content Toggle raw display
$13$ \( (T^{2} + 10724 T + 26913780)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 39\!\cdots\!01 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 39\!\cdots\!25 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 79\!\cdots\!69 \) Copy content Toggle raw display
$29$ \( (T^{2} + 95660 T - 302210796)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 31\!\cdots\!25 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 21\!\cdots\!49 \) Copy content Toggle raw display
$41$ \( (T^{2} + 805980 T + 154982022516)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 267976 T - 9474621680)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 60\!\cdots\!81 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 77\!\cdots\!81 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 95\!\cdots\!09 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 13\!\cdots\!81 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 12\!\cdots\!21 \) Copy content Toggle raw display
$71$ \( (T^{2} + \cdots - 20052968986176)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 20\!\cdots\!25 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 14\!\cdots\!25 \) Copy content Toggle raw display
$83$ \( (T^{2} + \cdots + 14206197364176)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 38\!\cdots\!81 \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots - 89006519008780)^{2} \) Copy content Toggle raw display
show more
show less