Properties

Label 98.8
Level 98
Weight 8
Dimension 659
Nonzero newspaces 4
Newform subspaces 30
Sturm bound 4704
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 30 \)
Sturm bound: \(4704\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(98))\).

Total New Old
Modular forms 2118 659 1459
Cusp forms 1998 659 1339
Eisenstein series 120 0 120

Trace form

\( 659 q - 8 q^{2} + 120 q^{3} - 192 q^{4} - 222 q^{5} + 2496 q^{6} + 664 q^{7} - 512 q^{8} - 9183 q^{9} + 2928 q^{10} + 15180 q^{11} + 7680 q^{12} - 44838 q^{13} + 26832 q^{14} - 2856 q^{15} - 12288 q^{16}+ \cdots - 182230524 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(98))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
98.8.a \(\chi_{98}(1, \cdot)\) 98.8.a.a 1 1
98.8.a.b 1
98.8.a.c 1
98.8.a.d 2
98.8.a.e 2
98.8.a.f 2
98.8.a.g 2
98.8.a.h 2
98.8.a.i 2
98.8.a.j 2
98.8.a.k 2
98.8.a.l 4
98.8.c \(\chi_{98}(67, \cdot)\) 98.8.c.a 2 2
98.8.c.b 2
98.8.c.c 2
98.8.c.d 2
98.8.c.e 2
98.8.c.f 2
98.8.c.g 4
98.8.c.h 4
98.8.c.i 4
98.8.c.j 4
98.8.c.k 4
98.8.c.l 4
98.8.c.m 4
98.8.c.n 8
98.8.e \(\chi_{98}(15, \cdot)\) 98.8.e.a 102 6
98.8.e.b 102
98.8.g \(\chi_{98}(9, \cdot)\) 98.8.g.a 192 12
98.8.g.b 192

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(98))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(98)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 2}\)