Properties

Label 98.8.a.j
Level $98$
Weight $8$
Character orbit 98.a
Self dual yes
Analytic conductor $30.614$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [98,8,Mod(1,98)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(98, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("98.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.6137324974\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{37}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 8\sqrt{37}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 q^{2} - \beta q^{3} + 64 q^{4} - 5 \beta q^{5} - 8 \beta q^{6} + 512 q^{8} + 181 q^{9} - 40 \beta q^{10} + 1580 q^{11} - 64 \beta q^{12} - 203 \beta q^{13} + 11840 q^{15} + 4096 q^{16} - 414 \beta q^{17} + \cdots + 285980 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16 q^{2} + 128 q^{4} + 1024 q^{8} + 362 q^{9} + 3160 q^{11} + 23680 q^{15} + 8192 q^{16} + 2896 q^{18} + 25280 q^{22} + 200304 q^{23} - 37850 q^{25} + 23188 q^{29} + 189440 q^{30} + 65536 q^{32} + 23168 q^{36}+ \cdots + 571960 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.54138
−2.54138
8.00000 −48.6621 64.0000 −243.311 −389.297 0 512.000 181.000 −1946.48
1.2 8.00000 48.6621 64.0000 243.311 389.297 0 512.000 181.000 1946.48
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.8.a.j 2
7.b odd 2 1 inner 98.8.a.j 2
7.c even 3 2 98.8.c.i 4
7.d odd 6 2 98.8.c.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
98.8.a.j 2 1.a even 1 1 trivial
98.8.a.j 2 7.b odd 2 1 inner
98.8.c.i 4 7.c even 3 2
98.8.c.i 4 7.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 2368 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(98))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 8)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2368 \) Copy content Toggle raw display
$5$ \( T^{2} - 59200 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T - 1580)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 97582912 \) Copy content Toggle raw display
$17$ \( T^{2} - 405865728 \) Copy content Toggle raw display
$19$ \( T^{2} - 3018349888 \) Copy content Toggle raw display
$23$ \( (T - 100152)^{2} \) Copy content Toggle raw display
$29$ \( (T - 11594)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 4138515712 \) Copy content Toggle raw display
$37$ \( (T - 503058)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 200340387072 \) Copy content Toggle raw display
$43$ \( (T + 560516)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 85874298112 \) Copy content Toggle raw display
$53$ \( (T - 1287998)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 3895436915008 \) Copy content Toggle raw display
$61$ \( T^{2} - 316937290048 \) Copy content Toggle raw display
$67$ \( (T + 792500)^{2} \) Copy content Toggle raw display
$71$ \( (T + 2229904)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 36560862773248 \) Copy content Toggle raw display
$79$ \( (T - 2513080)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 28248409159488 \) Copy content Toggle raw display
$89$ \( T^{2} - 64875789107200 \) Copy content Toggle raw display
$97$ \( T^{2} - 82656102995200 \) Copy content Toggle raw display
show more
show less