Properties

Label 98.8.c.i
Level $98$
Weight $8$
Character orbit 98.c
Analytic conductor $30.614$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [98,8,Mod(67,98)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(98, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("98.67");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 98.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.6137324974\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{37})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 10x^{2} + 9x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (8 \beta_1 - 8) q^{2} - \beta_{2} q^{3} - 64 \beta_1 q^{4} + (5 \beta_{3} + 5 \beta_{2}) q^{5} - 8 \beta_{3} q^{6} + 512 q^{8} + (181 \beta_1 - 181) q^{9} - 40 \beta_{2} q^{10} - 1580 \beta_1 q^{11}+ \cdots + 285980 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{2} - 128 q^{4} + 2048 q^{8} - 362 q^{9} - 3160 q^{11} + 47360 q^{15} - 8192 q^{16} - 2896 q^{18} + 50560 q^{22} - 200304 q^{23} + 37850 q^{25} + 46376 q^{29} - 189440 q^{30} - 65536 q^{32} + 46336 q^{36}+ \cdots + 1143920 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 10x^{2} + 9x + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + 10\nu^{2} - 10\nu + 81 ) / 90 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 4\nu^{3} - 40\nu^{2} + 760\nu - 324 ) / 45 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 8\nu^{3} + 112 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 8\beta_1 ) / 16 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + \beta_{2} + 152\beta _1 - 152 ) / 16 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 5\beta_{3} - 112 ) / 8 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/98\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1 + \beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
1.77069 3.06693i
−1.27069 + 2.20090i
1.77069 + 3.06693i
−1.27069 2.20090i
−4.00000 6.92820i −24.3311 + 42.1426i −32.0000 + 55.4256i −121.655 210.713i 389.297 0 512.000 −90.5000 156.751i −973.242 + 1685.70i
67.2 −4.00000 6.92820i 24.3311 42.1426i −32.0000 + 55.4256i 121.655 + 210.713i −389.297 0 512.000 −90.5000 156.751i 973.242 1685.70i
79.1 −4.00000 + 6.92820i −24.3311 42.1426i −32.0000 55.4256i −121.655 + 210.713i 389.297 0 512.000 −90.5000 + 156.751i −973.242 1685.70i
79.2 −4.00000 + 6.92820i 24.3311 + 42.1426i −32.0000 55.4256i 121.655 210.713i −389.297 0 512.000 −90.5000 + 156.751i 973.242 + 1685.70i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
7.c even 3 1 inner
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.8.c.i 4
7.b odd 2 1 inner 98.8.c.i 4
7.c even 3 1 98.8.a.j 2
7.c even 3 1 inner 98.8.c.i 4
7.d odd 6 1 98.8.a.j 2
7.d odd 6 1 inner 98.8.c.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
98.8.a.j 2 7.c even 3 1
98.8.a.j 2 7.d odd 6 1
98.8.c.i 4 1.a even 1 1 trivial
98.8.c.i 4 7.b odd 2 1 inner
98.8.c.i 4 7.c even 3 1 inner
98.8.c.i 4 7.d odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 2368T_{3}^{2} + 5607424 \) acting on \(S_{8}^{\mathrm{new}}(98, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 8 T + 64)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 2368 T^{2} + 5607424 \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 3504640000 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 1580 T + 2496400)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 97582912)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 16\!\cdots\!84 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 91\!\cdots\!44 \) Copy content Toggle raw display
$23$ \( (T^{2} + 100152 T + 10030423104)^{2} \) Copy content Toggle raw display
$29$ \( (T - 11594)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 17\!\cdots\!44 \) Copy content Toggle raw display
$37$ \( (T^{2} + 503058 T + 253067351364)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 200340387072)^{2} \) Copy content Toggle raw display
$43$ \( (T + 560516)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 73\!\cdots\!44 \) Copy content Toggle raw display
$53$ \( (T^{2} + \cdots + 1658938848004)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 15\!\cdots\!64 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 10\!\cdots\!04 \) Copy content Toggle raw display
$67$ \( (T^{2} - 792500 T + 628056250000)^{2} \) Copy content Toggle raw display
$71$ \( (T + 2229904)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 13\!\cdots\!04 \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots + 6315571086400)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 28248409159488)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 42\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( (T^{2} - 82656102995200)^{2} \) Copy content Toggle raw display
show more
show less