Properties

Label 98.8.c.d
Level $98$
Weight $8$
Character orbit 98.c
Analytic conductor $30.614$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [98,8,Mod(67,98)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(98, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("98.67");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 98.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.6137324974\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 \zeta_{6} q^{2} + (12 \zeta_{6} - 12) q^{3} + (64 \zeta_{6} - 64) q^{4} + 210 \zeta_{6} q^{5} - 96 q^{6} - 512 q^{8} + 2043 \zeta_{6} q^{9} + (1680 \zeta_{6} - 1680) q^{10} + (1092 \zeta_{6} - 1092) q^{11}+ \cdots - 2230956 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 12 q^{3} - 64 q^{4} + 210 q^{5} - 192 q^{6} - 1024 q^{8} + 2043 q^{9} - 1680 q^{10} - 1092 q^{11} - 768 q^{12} + 2764 q^{13} - 5040 q^{15} - 4096 q^{16} - 14706 q^{17} - 16344 q^{18} + 39940 q^{19}+ \cdots - 4461912 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/98\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
0.500000 + 0.866025i
0.500000 0.866025i
4.00000 + 6.92820i −6.00000 + 10.3923i −32.0000 + 55.4256i 105.000 + 181.865i −96.0000 0 −512.000 1021.50 + 1769.29i −840.000 + 1454.92i
79.1 4.00000 6.92820i −6.00000 10.3923i −32.0000 55.4256i 105.000 181.865i −96.0000 0 −512.000 1021.50 1769.29i −840.000 1454.92i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.8.c.d 2
7.b odd 2 1 98.8.c.e 2
7.c even 3 1 2.8.a.a 1
7.c even 3 1 inner 98.8.c.d 2
7.d odd 6 1 98.8.a.a 1
7.d odd 6 1 98.8.c.e 2
21.h odd 6 1 18.8.a.b 1
28.g odd 6 1 16.8.a.b 1
35.j even 6 1 50.8.a.g 1
35.l odd 12 2 50.8.b.c 2
56.k odd 6 1 64.8.a.e 1
56.p even 6 1 64.8.a.c 1
63.g even 3 1 162.8.c.l 2
63.h even 3 1 162.8.c.l 2
63.j odd 6 1 162.8.c.a 2
63.n odd 6 1 162.8.c.a 2
77.h odd 6 1 242.8.a.e 1
84.n even 6 1 144.8.a.i 1
91.r even 6 1 338.8.a.d 1
91.z odd 12 2 338.8.b.d 2
105.o odd 6 1 450.8.a.c 1
105.x even 12 2 450.8.c.g 2
112.u odd 12 2 256.8.b.f 2
112.w even 12 2 256.8.b.b 2
119.j even 6 1 578.8.a.b 1
140.p odd 6 1 400.8.a.l 1
140.w even 12 2 400.8.c.j 2
168.s odd 6 1 576.8.a.g 1
168.v even 6 1 576.8.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2.8.a.a 1 7.c even 3 1
16.8.a.b 1 28.g odd 6 1
18.8.a.b 1 21.h odd 6 1
50.8.a.g 1 35.j even 6 1
50.8.b.c 2 35.l odd 12 2
64.8.a.c 1 56.p even 6 1
64.8.a.e 1 56.k odd 6 1
98.8.a.a 1 7.d odd 6 1
98.8.c.d 2 1.a even 1 1 trivial
98.8.c.d 2 7.c even 3 1 inner
98.8.c.e 2 7.b odd 2 1
98.8.c.e 2 7.d odd 6 1
144.8.a.i 1 84.n even 6 1
162.8.c.a 2 63.j odd 6 1
162.8.c.a 2 63.n odd 6 1
162.8.c.l 2 63.g even 3 1
162.8.c.l 2 63.h even 3 1
242.8.a.e 1 77.h odd 6 1
256.8.b.b 2 112.w even 12 2
256.8.b.f 2 112.u odd 12 2
338.8.a.d 1 91.r even 6 1
338.8.b.d 2 91.z odd 12 2
400.8.a.l 1 140.p odd 6 1
400.8.c.j 2 140.w even 12 2
450.8.a.c 1 105.o odd 6 1
450.8.c.g 2 105.x even 12 2
576.8.a.f 1 168.v even 6 1
576.8.a.g 1 168.s odd 6 1
578.8.a.b 1 119.j even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 12T_{3} + 144 \) acting on \(S_{8}^{\mathrm{new}}(98, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$3$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$5$ \( T^{2} - 210T + 44100 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 1092 T + 1192464 \) Copy content Toggle raw display
$13$ \( (T - 1382)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 14706 T + 216266436 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 1595203600 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 4721338944 \) Copy content Toggle raw display
$29$ \( (T + 102570)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 51779912704 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 25768596676 \) Copy content Toggle raw display
$41$ \( (T - 10842)^{2} \) Copy content Toggle raw display
$43$ \( (T + 630748)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 223403694336 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 2232089784324 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 6973085235600 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 685090600804 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 15877008016 \) Copy content Toggle raw display
$71$ \( (T + 1414728)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 960952799524 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 12722062240000 \) Copy content Toggle raw display
$83$ \( (T - 5672892)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 142830942416100 \) Copy content Toggle raw display
$97$ \( (T - 8682146)^{2} \) Copy content Toggle raw display
show more
show less