Properties

Label 98.8.a.l
Level $98$
Weight $8$
Character orbit 98.a
Self dual yes
Analytic conductor $30.614$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [98,8,Mod(1,98)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(98, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("98.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.6137324974\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{1801})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 903x^{2} + 904x + 200702 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3}\cdot 7^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8 q^{2} + (\beta_{3} + 2 \beta_1) q^{3} + 64 q^{4} + 10 \beta_1 q^{5} + ( - 8 \beta_{3} - 16 \beta_1) q^{6} - 512 q^{8} + ( - 4 \beta_{2} + 1807) q^{9} - 80 \beta_1 q^{10} + (9 \beta_{2} - 1568) q^{11}+ \cdots + (22535 \beta_{2} - 15541232) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32 q^{2} + 256 q^{4} - 2048 q^{8} + 7228 q^{9} - 6272 q^{11} + 7840 q^{15} + 16384 q^{16} - 57824 q^{18} + 50176 q^{22} - 12544 q^{23} - 273300 q^{25} - 75736 q^{29} - 62720 q^{30} - 131072 q^{32}+ \cdots - 62164928 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 903x^{2} + 904x + 200702 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -14\nu^{3} + 21\nu^{2} + 6377\nu - 3192 ) / 1793 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -56\nu^{3} + 84\nu^{2} + 75712\nu - 37870 ) / 1793 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - \nu - 452 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 4\beta _1 + 14 ) / 28 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 28\beta_{3} + \beta_{2} - 4\beta _1 + 12670 ) / 28 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 42\beta_{3} + 457\beta_{2} - 5414\beta _1 + 18998 ) / 28 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−19.3049
20.3049
23.1333
−22.1333
−8.00000 −79.8157 64.0000 −98.9949 638.525 0 −512.000 4183.54 791.960
1.2 −8.00000 −40.2177 64.0000 98.9949 321.741 0 −512.000 −569.539 −791.960
1.3 −8.00000 40.2177 64.0000 −98.9949 −321.741 0 −512.000 −569.539 791.960
1.4 −8.00000 79.8157 64.0000 98.9949 −638.525 0 −512.000 4183.54 −791.960
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.8.a.l 4
7.b odd 2 1 inner 98.8.a.l 4
7.c even 3 2 98.8.c.n 8
7.d odd 6 2 98.8.c.n 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
98.8.a.l 4 1.a even 1 1 trivial
98.8.a.l 4 7.b odd 2 1 inner
98.8.c.n 8 7.c even 3 2
98.8.c.n 8 7.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 7988T_{3}^{2} + 10304100 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(98))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 8)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 7988 T^{2} + 10304100 \) Copy content Toggle raw display
$5$ \( (T^{2} - 9800)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 3136 T - 26134052)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 45\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 31\!\cdots\!96 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( (T^{2} + 6272 T - 1019501840)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 37868 T - 28920403868)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 87\!\cdots\!04 \) Copy content Toggle raw display
$37$ \( (T^{2} - 617348 T + 87959913220)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 77\!\cdots\!96 \) Copy content Toggle raw display
$43$ \( (T^{2} - 1410880 T + 470168031964)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 76\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( (T^{2} + \cdots - 2138410258844)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 14\!\cdots\!76 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 65\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( (T^{2} - 2671080 T + 815633452944)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + \cdots - 2982923301456)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 15\!\cdots\!76 \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots - 19980575976080)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 13\!\cdots\!04 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 33\!\cdots\!24 \) Copy content Toggle raw display
show more
show less