Newspace parameters
Level: | \( N \) | \(=\) | \( 264 = 2^{3} \cdot 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 264.z (of order \(10\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.10805061336\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 | −1.40421 | − | 0.167908i | −0.309017 | − | 0.951057i | 1.94361 | + | 0.471557i | −1.03968 | + | 1.43099i | 0.274235 | + | 1.38737i | −0.430909 | + | 1.32620i | −2.65006 | − | 0.988513i | −0.809017 | + | 0.587785i | 1.70020 | − | 1.83484i |
19.2 | −1.32746 | − | 0.487693i | −0.309017 | − | 0.951057i | 1.52431 | + | 1.29479i | 2.61989 | − | 3.60596i | −0.0536155 | + | 1.41320i | −0.177135 | + | 0.545166i | −1.39201 | − | 2.46218i | −0.809017 | + | 0.587785i | −5.23640 | + | 3.50908i |
19.3 | −1.23741 | + | 0.684696i | −0.309017 | − | 0.951057i | 1.06238 | − | 1.69450i | −0.409298 | + | 0.563350i | 1.03357 | + | 0.965267i | −0.510340 | + | 1.57067i | −0.154385 | + | 2.82421i | −0.809017 | + | 0.587785i | 0.120747 | − | 0.977341i |
19.4 | −0.565882 | + | 1.29606i | −0.309017 | − | 0.951057i | −1.35955 | − | 1.46684i | −2.02566 | + | 2.78809i | 1.40750 | + | 0.137681i | 1.45266 | − | 4.47083i | 2.67046 | − | 0.932009i | −0.809017 | + | 0.587785i | −2.46725 | − | 4.20312i |
19.5 | −0.0536155 | − | 1.41320i | −0.309017 | − | 0.951057i | −1.99425 | + | 0.151538i | −2.61989 | + | 3.60596i | −1.32746 | + | 0.487693i | 0.177135 | − | 0.545166i | 0.321076 | + | 2.81014i | −0.809017 | + | 0.587785i | 5.23640 | + | 3.50908i |
19.6 | 0.0942405 | + | 1.41107i | −0.309017 | − | 0.951057i | −1.98224 | + | 0.265960i | −0.509926 | + | 0.701853i | 1.31289 | − | 0.525673i | −0.919860 | + | 2.83104i | −0.562095 | − | 2.77201i | −0.809017 | + | 0.587785i | −1.03842 | − | 0.653398i |
19.7 | 0.274235 | − | 1.38737i | −0.309017 | − | 0.951057i | −1.84959 | − | 0.760930i | 1.03968 | − | 1.43099i | −1.40421 | + | 0.167908i | 0.430909 | − | 1.32620i | −1.56291 | + | 2.35739i | −0.809017 | + | 0.587785i | −1.70020 | − | 1.83484i |
19.8 | 0.445083 | + | 1.34235i | −0.309017 | − | 0.951057i | −1.60380 | + | 1.19491i | 1.48262 | − | 2.04066i | 1.13911 | − | 0.838108i | 1.07225 | − | 3.30005i | −2.31782 | − | 1.62103i | −0.809017 | + | 0.587785i | 3.39916 | + | 1.08194i |
19.9 | 1.03357 | − | 0.965267i | −0.309017 | − | 0.951057i | 0.136519 | − | 1.99534i | 0.409298 | − | 0.563350i | −1.23741 | − | 0.684696i | 0.510340 | − | 1.57067i | −1.78493 | − | 2.19409i | −0.809017 | + | 0.587785i | −0.120747 | − | 0.977341i |
19.10 | 1.13911 | + | 0.838108i | −0.309017 | − | 0.951057i | 0.595151 | + | 1.90940i | −1.48262 | + | 2.04066i | 0.445083 | − | 1.34235i | −1.07225 | + | 3.30005i | −0.922336 | + | 2.67382i | −0.809017 | + | 0.587785i | −3.39916 | + | 1.08194i |
19.11 | 1.31289 | + | 0.525673i | −0.309017 | − | 0.951057i | 1.44734 | + | 1.38030i | 0.509926 | − | 0.701853i | 0.0942405 | − | 1.41107i | 0.919860 | − | 2.83104i | 1.17460 | + | 2.57300i | −0.809017 | + | 0.587785i | 1.03842 | − | 0.653398i |
19.12 | 1.40750 | − | 0.137681i | −0.309017 | − | 0.951057i | 1.96209 | − | 0.387571i | 2.02566 | − | 2.78809i | −0.565882 | − | 1.29606i | −1.45266 | + | 4.47083i | 2.70827 | − | 0.815646i | −0.809017 | + | 0.587785i | 2.46725 | − | 4.20312i |
139.1 | −1.40421 | + | 0.167908i | −0.309017 | + | 0.951057i | 1.94361 | − | 0.471557i | −1.03968 | − | 1.43099i | 0.274235 | − | 1.38737i | −0.430909 | − | 1.32620i | −2.65006 | + | 0.988513i | −0.809017 | − | 0.587785i | 1.70020 | + | 1.83484i |
139.2 | −1.32746 | + | 0.487693i | −0.309017 | + | 0.951057i | 1.52431 | − | 1.29479i | 2.61989 | + | 3.60596i | −0.0536155 | − | 1.41320i | −0.177135 | − | 0.545166i | −1.39201 | + | 2.46218i | −0.809017 | − | 0.587785i | −5.23640 | − | 3.50908i |
139.3 | −1.23741 | − | 0.684696i | −0.309017 | + | 0.951057i | 1.06238 | + | 1.69450i | −0.409298 | − | 0.563350i | 1.03357 | − | 0.965267i | −0.510340 | − | 1.57067i | −0.154385 | − | 2.82421i | −0.809017 | − | 0.587785i | 0.120747 | + | 0.977341i |
139.4 | −0.565882 | − | 1.29606i | −0.309017 | + | 0.951057i | −1.35955 | + | 1.46684i | −2.02566 | − | 2.78809i | 1.40750 | − | 0.137681i | 1.45266 | + | 4.47083i | 2.67046 | + | 0.932009i | −0.809017 | − | 0.587785i | −2.46725 | + | 4.20312i |
139.5 | −0.0536155 | + | 1.41320i | −0.309017 | + | 0.951057i | −1.99425 | − | 0.151538i | −2.61989 | − | 3.60596i | −1.32746 | − | 0.487693i | 0.177135 | + | 0.545166i | 0.321076 | − | 2.81014i | −0.809017 | − | 0.587785i | 5.23640 | − | 3.50908i |
139.6 | 0.0942405 | − | 1.41107i | −0.309017 | + | 0.951057i | −1.98224 | − | 0.265960i | −0.509926 | − | 0.701853i | 1.31289 | + | 0.525673i | −0.919860 | − | 2.83104i | −0.562095 | + | 2.77201i | −0.809017 | − | 0.587785i | −1.03842 | + | 0.653398i |
139.7 | 0.274235 | + | 1.38737i | −0.309017 | + | 0.951057i | −1.84959 | + | 0.760930i | 1.03968 | + | 1.43099i | −1.40421 | − | 0.167908i | 0.430909 | + | 1.32620i | −1.56291 | − | 2.35739i | −0.809017 | − | 0.587785i | −1.70020 | + | 1.83484i |
139.8 | 0.445083 | − | 1.34235i | −0.309017 | + | 0.951057i | −1.60380 | − | 1.19491i | 1.48262 | + | 2.04066i | 1.13911 | + | 0.838108i | 1.07225 | + | 3.30005i | −2.31782 | + | 1.62103i | −0.809017 | − | 0.587785i | 3.39916 | − | 1.08194i |
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | inner |
11.d | odd | 10 | 1 | inner |
88.k | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 264.2.z.b | ✓ | 48 |
3.b | odd | 2 | 1 | 792.2.bp.d | 48 | ||
4.b | odd | 2 | 1 | 1056.2.bp.a | 48 | ||
8.b | even | 2 | 1 | 1056.2.bp.a | 48 | ||
8.d | odd | 2 | 1 | inner | 264.2.z.b | ✓ | 48 |
11.d | odd | 10 | 1 | inner | 264.2.z.b | ✓ | 48 |
24.f | even | 2 | 1 | 792.2.bp.d | 48 | ||
33.f | even | 10 | 1 | 792.2.bp.d | 48 | ||
44.g | even | 10 | 1 | 1056.2.bp.a | 48 | ||
88.k | even | 10 | 1 | inner | 264.2.z.b | ✓ | 48 |
88.p | odd | 10 | 1 | 1056.2.bp.a | 48 | ||
264.r | odd | 10 | 1 | 792.2.bp.d | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
264.2.z.b | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
264.2.z.b | ✓ | 48 | 8.d | odd | 2 | 1 | inner |
264.2.z.b | ✓ | 48 | 11.d | odd | 10 | 1 | inner |
264.2.z.b | ✓ | 48 | 88.k | even | 10 | 1 | inner |
792.2.bp.d | 48 | 3.b | odd | 2 | 1 | ||
792.2.bp.d | 48 | 24.f | even | 2 | 1 | ||
792.2.bp.d | 48 | 33.f | even | 10 | 1 | ||
792.2.bp.d | 48 | 264.r | odd | 10 | 1 | ||
1056.2.bp.a | 48 | 4.b | odd | 2 | 1 | ||
1056.2.bp.a | 48 | 8.b | even | 2 | 1 | ||
1056.2.bp.a | 48 | 44.g | even | 10 | 1 | ||
1056.2.bp.a | 48 | 88.p | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{48} - 28 T_{5}^{46} + 778 T_{5}^{44} - 19176 T_{5}^{42} + 368015 T_{5}^{40} + \cdots + 4308219140625 \)
acting on \(S_{2}^{\mathrm{new}}(264, [\chi])\).