L(s) = 1 | + (−1.41 + 0.0416i)2-s + (0.809 − 0.587i)3-s + (1.99 − 0.117i)4-s + (−2.29 + 0.744i)5-s + (−1.11 + 0.864i)6-s + (2.61 + 1.90i)7-s + (−2.81 + 0.249i)8-s + (0.309 − 0.951i)9-s + (3.20 − 1.14i)10-s + (1.66 + 2.86i)11-s + (1.54 − 1.26i)12-s + (−0.947 + 2.91i)13-s + (−3.78 − 2.58i)14-s + (−1.41 + 1.94i)15-s + (3.97 − 0.470i)16-s + (6.10 − 1.98i)17-s + ⋯ |
L(s) = 1 | + (−0.999 + 0.0294i)2-s + (0.467 − 0.339i)3-s + (0.998 − 0.0588i)4-s + (−1.02 + 0.332i)5-s + (−0.456 + 0.352i)6-s + (0.989 + 0.719i)7-s + (−0.996 + 0.0882i)8-s + (0.103 − 0.317i)9-s + (1.01 − 0.362i)10-s + (0.501 + 0.865i)11-s + (0.446 − 0.366i)12-s + (−0.262 + 0.808i)13-s + (−1.01 − 0.689i)14-s + (−0.365 + 0.503i)15-s + (0.993 − 0.117i)16-s + (1.47 − 0.480i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.829 - 0.557i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.829 - 0.557i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.872776 + 0.266069i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.872776 + 0.266069i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.41 - 0.0416i)T \) |
| 3 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 + (-1.66 - 2.86i)T \) |
good | 5 | \( 1 + (2.29 - 0.744i)T + (4.04 - 2.93i)T^{2} \) |
| 7 | \( 1 + (-2.61 - 1.90i)T + (2.16 + 6.65i)T^{2} \) |
| 13 | \( 1 + (0.947 - 2.91i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (-6.10 + 1.98i)T + (13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (1.09 + 1.50i)T + (-5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + 0.597iT - 23T^{2} \) |
| 29 | \( 1 + (-7.47 - 5.42i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-1.12 - 0.366i)T + (25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (-0.797 + 1.09i)T + (-11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (-4.34 - 5.97i)T + (-12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 - 2.87iT - 43T^{2} \) |
| 47 | \( 1 + (5.56 + 7.65i)T + (-14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (7.66 + 2.48i)T + (42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (6.09 + 4.42i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (3.95 + 12.1i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + 5.40T + 67T^{2} \) |
| 71 | \( 1 + (4.12 - 1.34i)T + (57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (4.84 - 6.66i)T + (-22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-4.77 + 14.6i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (12.7 - 4.15i)T + (67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 - 15.4T + 89T^{2} \) |
| 97 | \( 1 + (0.126 - 0.390i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.87457860594404892772853180888, −11.26936487433994237151799489284, −9.961824974080301946605936840739, −9.029479766491477810383780302416, −8.101016672429296028421655224301, −7.47361846888110235094696878396, −6.52976459112714597462725546076, −4.78623767981785422167930527152, −3.10581426233948795357494698251, −1.66802897416856836971920512816,
1.07432425529104819180393282769, 3.17778734214807986003116637713, 4.32945102640986952967953170783, 5.94620816652963474400617419788, 7.69116684697780413277559603819, 7.908093232918101091344010350389, 8.756999079191376969159745178190, 10.05426423881603323201205828078, 10.74617754480921359920005140615, 11.68520670522799117833510882920