L(s) = 1 | + (0.445 + 1.34i)2-s + (−0.309 − 0.951i)3-s + (−1.60 + 1.19i)4-s + (1.48 − 2.04i)5-s + (1.13 − 0.838i)6-s + (1.07 − 3.30i)7-s + (−2.31 − 1.62i)8-s + (−0.809 + 0.587i)9-s + (3.39 + 1.08i)10-s + (2.55 − 2.11i)11-s + (1.63 + 1.15i)12-s + (−1.89 + 1.37i)13-s + (4.90 − 0.0294i)14-s + (−2.39 − 0.779i)15-s + (1.14 − 3.83i)16-s + (−2.12 + 2.92i)17-s + ⋯ |
L(s) = 1 | + (0.314 + 0.949i)2-s + (−0.178 − 0.549i)3-s + (−0.801 + 0.597i)4-s + (0.663 − 0.912i)5-s + (0.465 − 0.342i)6-s + (0.405 − 1.24i)7-s + (−0.819 − 0.573i)8-s + (−0.269 + 0.195i)9-s + (1.07 + 0.342i)10-s + (0.770 − 0.637i)11-s + (0.471 + 0.333i)12-s + (−0.525 + 0.381i)13-s + (1.31 − 0.00787i)14-s + (−0.619 − 0.201i)15-s + (0.286 − 0.958i)16-s + (−0.516 + 0.710i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.986 + 0.163i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.986 + 0.163i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.42778 - 0.117360i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.42778 - 0.117360i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.445 - 1.34i)T \) |
| 3 | \( 1 + (0.309 + 0.951i)T \) |
| 11 | \( 1 + (-2.55 + 2.11i)T \) |
good | 5 | \( 1 + (-1.48 + 2.04i)T + (-1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (-1.07 + 3.30i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (1.89 - 1.37i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (2.12 - 2.92i)T + (-5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-6.47 + 2.10i)T + (15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 7.17iT - 23T^{2} \) |
| 29 | \( 1 + (0.252 - 0.776i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (3.49 + 4.81i)T + (-9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.96 - 0.639i)T + (29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (4.24 - 1.38i)T + (33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 5.90iT - 43T^{2} \) |
| 47 | \( 1 + (6.31 - 2.05i)T + (38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-8.16 - 11.2i)T + (-16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (2.47 - 7.60i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (7.77 + 5.65i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 9.83T + 67T^{2} \) |
| 71 | \( 1 + (-3.94 + 5.43i)T + (-21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-4.23 - 1.37i)T + (59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (10.7 - 7.78i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-2.34 + 3.23i)T + (-25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 2.99T + 89T^{2} \) |
| 97 | \( 1 + (5.74 - 4.17i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.14051626502511488712180430484, −11.21660006798067344550376940010, −9.661995170702648675191620010417, −8.948426354934972825652873394882, −7.75500116451737186216670515048, −7.03817569201903122578266943835, −5.87668776765658736817883200270, −4.95560368173052477361073706865, −3.76454663796497101638962225121, −1.21055543781722145454577757462,
2.13995704377500371530677410054, 3.14615166175649897656643547272, 4.75081932143079923287258780180, 5.58822817257979533867916022896, 6.74072219152351089173131347014, 8.540157220203249521093285559498, 9.553599083022379422413807664935, 10.05301920589605705198400955435, 11.14243561134045752634862002621, 11.87348010908723500314630498193