L(s) = 1 | + (0.445 − 1.34i)2-s + (−0.309 + 0.951i)3-s + (−1.60 − 1.19i)4-s + (1.48 + 2.04i)5-s + (1.13 + 0.838i)6-s + (1.07 + 3.30i)7-s + (−2.31 + 1.62i)8-s + (−0.809 − 0.587i)9-s + (3.39 − 1.08i)10-s + (2.55 + 2.11i)11-s + (1.63 − 1.15i)12-s + (−1.89 − 1.37i)13-s + (4.90 + 0.0294i)14-s + (−2.39 + 0.779i)15-s + (1.14 + 3.83i)16-s + (−2.12 − 2.92i)17-s + ⋯ |
L(s) = 1 | + (0.314 − 0.949i)2-s + (−0.178 + 0.549i)3-s + (−0.801 − 0.597i)4-s + (0.663 + 0.912i)5-s + (0.465 + 0.342i)6-s + (0.405 + 1.24i)7-s + (−0.819 + 0.573i)8-s + (−0.269 − 0.195i)9-s + (1.07 − 0.342i)10-s + (0.770 + 0.637i)11-s + (0.471 − 0.333i)12-s + (−0.525 − 0.381i)13-s + (1.31 + 0.00787i)14-s + (−0.619 + 0.201i)15-s + (0.286 + 0.958i)16-s + (−0.516 − 0.710i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.986 - 0.163i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.986 - 0.163i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.42778 + 0.117360i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.42778 + 0.117360i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.445 + 1.34i)T \) |
| 3 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 + (-2.55 - 2.11i)T \) |
good | 5 | \( 1 + (-1.48 - 2.04i)T + (-1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-1.07 - 3.30i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (1.89 + 1.37i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (2.12 + 2.92i)T + (-5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-6.47 - 2.10i)T + (15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 7.17iT - 23T^{2} \) |
| 29 | \( 1 + (0.252 + 0.776i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (3.49 - 4.81i)T + (-9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.96 + 0.639i)T + (29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (4.24 + 1.38i)T + (33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 5.90iT - 43T^{2} \) |
| 47 | \( 1 + (6.31 + 2.05i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-8.16 + 11.2i)T + (-16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (2.47 + 7.60i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (7.77 - 5.65i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 9.83T + 67T^{2} \) |
| 71 | \( 1 + (-3.94 - 5.43i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-4.23 + 1.37i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (10.7 + 7.78i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-2.34 - 3.23i)T + (-25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 2.99T + 89T^{2} \) |
| 97 | \( 1 + (5.74 + 4.17i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.87348010908723500314630498193, −11.14243561134045752634862002621, −10.05301920589605705198400955435, −9.553599083022379422413807664935, −8.540157220203249521093285559498, −6.74072219152351089173131347014, −5.58822817257979533867916022896, −4.75081932143079923287258780180, −3.14615166175649897656643547272, −2.13995704377500371530677410054,
1.21055543781722145454577757462, 3.76454663796497101638962225121, 4.95560368173052477361073706865, 5.87668776765658736817883200270, 7.03817569201903122578266943835, 7.75500116451737186216670515048, 8.948426354934972825652873394882, 9.661995170702648675191620010417, 11.21660006798067344550376940010, 12.14051626502511488712180430484