L(s) = 1 | + (1.40 + 0.137i)2-s + (−0.309 + 0.951i)3-s + (1.96 + 0.387i)4-s + (2.02 + 2.78i)5-s + (−0.565 + 1.29i)6-s + (−1.45 − 4.47i)7-s + (2.70 + 0.815i)8-s + (−0.809 − 0.587i)9-s + (2.46 + 4.20i)10-s + (−2.16 + 2.51i)11-s + (−0.974 + 1.74i)12-s + (−2.66 − 1.93i)13-s + (−1.42 − 6.49i)14-s + (−3.27 + 1.06i)15-s + (3.69 + 1.52i)16-s + (1.49 + 2.05i)17-s + ⋯ |
L(s) = 1 | + (0.995 + 0.0973i)2-s + (−0.178 + 0.549i)3-s + (0.981 + 0.193i)4-s + (0.905 + 1.24i)5-s + (−0.231 + 0.529i)6-s + (−0.549 − 1.68i)7-s + (0.957 + 0.288i)8-s + (−0.269 − 0.195i)9-s + (0.780 + 1.32i)10-s + (−0.653 + 0.756i)11-s + (−0.281 + 0.504i)12-s + (−0.738 − 0.536i)13-s + (−0.381 − 1.73i)14-s + (−0.846 + 0.274i)15-s + (0.924 + 0.380i)16-s + (0.362 + 0.499i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.688 - 0.724i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.688 - 0.724i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.06123 + 0.884614i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.06123 + 0.884614i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.40 - 0.137i)T \) |
| 3 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 + (2.16 - 2.51i)T \) |
good | 5 | \( 1 + (-2.02 - 2.78i)T + (-1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (1.45 + 4.47i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (2.66 + 1.93i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-1.49 - 2.05i)T + (-5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.674 - 0.219i)T + (15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 7.35iT - 23T^{2} \) |
| 29 | \( 1 + (1.09 + 3.38i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (2.02 - 2.78i)T + (-9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-4.09 + 1.33i)T + (29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (6.14 + 1.99i)T + (33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 6.37iT - 43T^{2} \) |
| 47 | \( 1 + (-2.10 - 0.682i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (4.32 - 5.95i)T + (-16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-1.95 - 6.01i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-1.82 + 1.32i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 12.6T + 67T^{2} \) |
| 71 | \( 1 + (0.411 + 0.566i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-9.39 + 3.05i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-2.44 - 1.77i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-0.890 - 1.22i)T + (-25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 9.52T + 89T^{2} \) |
| 97 | \( 1 + (-10.6 - 7.77i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.27827932629761816254711528296, −10.69112371939645558037335937698, −10.49805526004964896375760612806, −9.866917119115437894996615244463, −7.64705592749110340212974055932, −6.93413230006872842235544674812, −6.05701027442820251146714632439, −4.78994551925637957725850012546, −3.63646960532935427424614164873, −2.51122036070969813380489543251,
1.81690737006888590824220097196, 2.97230303246797989866802116083, 5.12851218536112792880866398745, 5.48477772476774232988498309098, 6.37982110922044307979611894652, 7.85380362664563448890775861624, 9.088182950450574343096564757450, 9.792801527388423640959556074168, 11.46622202678754175993056063178, 12.03872638046641879516335079206