L(s) = 1 | + (1.31 − 0.525i)2-s + (−0.309 + 0.951i)3-s + (1.44 − 1.38i)4-s + (0.509 + 0.701i)5-s + (0.0942 + 1.41i)6-s + (0.919 + 2.83i)7-s + (1.17 − 2.57i)8-s + (−0.809 − 0.587i)9-s + (1.03 + 0.653i)10-s + (−0.848 − 3.20i)11-s + (0.865 + 1.80i)12-s + (3.09 + 2.25i)13-s + (2.69 + 3.23i)14-s + (−0.825 + 0.268i)15-s + (0.189 − 3.99i)16-s + (1.71 + 2.36i)17-s + ⋯ |
L(s) = 1 | + (0.928 − 0.371i)2-s + (−0.178 + 0.549i)3-s + (0.723 − 0.690i)4-s + (0.228 + 0.313i)5-s + (0.0384 + 0.576i)6-s + (0.347 + 1.07i)7-s + (0.415 − 0.909i)8-s + (−0.269 − 0.195i)9-s + (0.328 + 0.206i)10-s + (−0.255 − 0.966i)11-s + (0.249 + 0.520i)12-s + (0.859 + 0.624i)13-s + (0.720 + 0.864i)14-s + (−0.213 + 0.0692i)15-s + (0.0473 − 0.998i)16-s + (0.415 + 0.572i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0748i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 - 0.0748i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.11351 + 0.0792143i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.11351 + 0.0792143i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.31 + 0.525i)T \) |
| 3 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 + (0.848 + 3.20i)T \) |
good | 5 | \( 1 + (-0.509 - 0.701i)T + (-1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.919 - 2.83i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-3.09 - 2.25i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-1.71 - 2.36i)T + (-5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (7.06 + 2.29i)T + (15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 1.40iT - 23T^{2} \) |
| 29 | \( 1 + (3.25 + 10.0i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (4.24 - 5.84i)T + (-9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (3.72 - 1.21i)T + (29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.570 - 0.185i)T + (33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 8.21iT - 43T^{2} \) |
| 47 | \( 1 + (2.32 + 0.754i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (0.889 - 1.22i)T + (-16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (2.80 + 8.64i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (6.09 - 4.42i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 2.01T + 67T^{2} \) |
| 71 | \( 1 + (4.16 + 5.73i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-4.44 + 1.44i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-13.4 - 9.78i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (3.62 + 4.99i)T + (-25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 9.87T + 89T^{2} \) |
| 97 | \( 1 + (-0.462 - 0.335i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.87172343146715409378118289143, −11.09434993555297389054604506675, −10.49321501870295531312870353002, −9.211473945111140315004468804654, −8.247429513956451565294480845162, −6.36441984194571477773825468896, −5.89867730675111771818814210315, −4.68271744204848851914876662484, −3.47652641769737825028492633391, −2.14608224483565972913182124890,
1.79284168361734077437135549270, 3.62023569432409689955396531214, 4.80234319927562974108043137506, 5.81921688155946082492966814155, 7.02848434699224389924373687994, 7.63618955924293421689889805183, 8.770765063908659178742950803134, 10.48534268682161872606027905942, 11.03952525769799764965340182531, 12.38123727852203648582066716075