L(s) = 1 | + (1.31 + 0.525i)2-s + (−0.309 − 0.951i)3-s + (1.44 + 1.38i)4-s + (0.509 − 0.701i)5-s + (0.0942 − 1.41i)6-s + (0.919 − 2.83i)7-s + (1.17 + 2.57i)8-s + (−0.809 + 0.587i)9-s + (1.03 − 0.653i)10-s + (−0.848 + 3.20i)11-s + (0.865 − 1.80i)12-s + (3.09 − 2.25i)13-s + (2.69 − 3.23i)14-s + (−0.825 − 0.268i)15-s + (0.189 + 3.99i)16-s + (1.71 − 2.36i)17-s + ⋯ |
L(s) = 1 | + (0.928 + 0.371i)2-s + (−0.178 − 0.549i)3-s + (0.723 + 0.690i)4-s + (0.228 − 0.313i)5-s + (0.0384 − 0.576i)6-s + (0.347 − 1.07i)7-s + (0.415 + 0.909i)8-s + (−0.269 + 0.195i)9-s + (0.328 − 0.206i)10-s + (−0.255 + 0.966i)11-s + (0.249 − 0.520i)12-s + (0.859 − 0.624i)13-s + (0.720 − 0.864i)14-s + (−0.213 − 0.0692i)15-s + (0.0473 + 0.998i)16-s + (0.415 − 0.572i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0748i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 + 0.0748i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.11351 - 0.0792143i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.11351 - 0.0792143i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.31 - 0.525i)T \) |
| 3 | \( 1 + (0.309 + 0.951i)T \) |
| 11 | \( 1 + (0.848 - 3.20i)T \) |
good | 5 | \( 1 + (-0.509 + 0.701i)T + (-1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.919 + 2.83i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-3.09 + 2.25i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-1.71 + 2.36i)T + (-5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (7.06 - 2.29i)T + (15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 1.40iT - 23T^{2} \) |
| 29 | \( 1 + (3.25 - 10.0i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (4.24 + 5.84i)T + (-9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (3.72 + 1.21i)T + (29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.570 + 0.185i)T + (33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 8.21iT - 43T^{2} \) |
| 47 | \( 1 + (2.32 - 0.754i)T + (38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (0.889 + 1.22i)T + (-16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (2.80 - 8.64i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (6.09 + 4.42i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 2.01T + 67T^{2} \) |
| 71 | \( 1 + (4.16 - 5.73i)T + (-21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-4.44 - 1.44i)T + (59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-13.4 + 9.78i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (3.62 - 4.99i)T + (-25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 9.87T + 89T^{2} \) |
| 97 | \( 1 + (-0.462 + 0.335i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.38123727852203648582066716075, −11.03952525769799764965340182531, −10.48534268682161872606027905942, −8.770765063908659178742950803134, −7.63618955924293421689889805183, −7.02848434699224389924373687994, −5.81921688155946082492966814155, −4.80234319927562974108043137506, −3.62023569432409689955396531214, −1.79284168361734077437135549270,
2.14608224483565972913182124890, 3.47652641769737825028492633391, 4.68271744204848851914876662484, 5.89867730675111771818814210315, 6.36441984194571477773825468896, 8.247429513956451565294480845162, 9.211473945111140315004468804654, 10.49321501870295531312870353002, 11.09434993555297389054604506675, 11.87172343146715409378118289143