L(s) = 1 | + (1.31 + 0.515i)2-s + (0.809 − 0.587i)3-s + (1.46 + 1.35i)4-s + (2.47 − 0.803i)5-s + (1.36 − 0.357i)6-s + (−3.20 − 2.32i)7-s + (1.23 + 2.54i)8-s + (0.309 − 0.951i)9-s + (3.67 + 0.215i)10-s + (−3.14 − 1.04i)11-s + (1.98 + 0.233i)12-s + (−1.46 + 4.50i)13-s + (−3.02 − 4.71i)14-s + (1.52 − 2.10i)15-s + (0.318 + 3.98i)16-s + (−1.39 + 0.453i)17-s + ⋯ |
L(s) = 1 | + (0.931 + 0.364i)2-s + (0.467 − 0.339i)3-s + (0.734 + 0.678i)4-s + (1.10 − 0.359i)5-s + (0.558 − 0.145i)6-s + (−1.21 − 0.880i)7-s + (0.437 + 0.899i)8-s + (0.103 − 0.317i)9-s + (1.16 + 0.0681i)10-s + (−0.949 − 0.314i)11-s + (0.573 + 0.0675i)12-s + (−0.406 + 1.25i)13-s + (−0.808 − 1.26i)14-s + (0.394 − 0.543i)15-s + (0.0796 + 0.996i)16-s + (−0.338 + 0.110i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 - 0.110i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 - 0.110i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.44479 + 0.135809i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.44479 + 0.135809i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.31 - 0.515i)T \) |
| 3 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 + (3.14 + 1.04i)T \) |
good | 5 | \( 1 + (-2.47 + 0.803i)T + (4.04 - 2.93i)T^{2} \) |
| 7 | \( 1 + (3.20 + 2.32i)T + (2.16 + 6.65i)T^{2} \) |
| 13 | \( 1 + (1.46 - 4.50i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (1.39 - 0.453i)T + (13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (0.733 + 1.00i)T + (-5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 - 5.10iT - 23T^{2} \) |
| 29 | \( 1 + (-0.392 - 0.285i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-7.31 - 2.37i)T + (25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (-5.66 + 7.79i)T + (-11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (-1.57 - 2.16i)T + (-12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + 5.05iT - 43T^{2} \) |
| 47 | \( 1 + (2.11 + 2.90i)T + (-14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (11.1 + 3.61i)T + (42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (11.2 + 8.16i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (-0.376 - 1.15i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 - 11.4T + 67T^{2} \) |
| 71 | \( 1 + (-2.09 + 0.679i)T + (57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-4.46 + 6.14i)T + (-22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-3.63 + 11.1i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (8.98 - 2.91i)T + (67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 - 10.2T + 89T^{2} \) |
| 97 | \( 1 + (-0.629 + 1.93i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.48008148176516323345510589869, −11.15465813769075542909751511702, −9.976244761216402824632159330847, −9.164538250437501917668259308779, −7.78655365868637954664280500916, −6.78580710116623128459153581288, −6.07009589470495075659926428438, −4.76633529813571482243457279734, −3.42674240463437091096489149160, −2.14579427016687170641817372436,
2.55921247226868910063816599912, 2.88585195415620940409552624740, 4.73152890581476657962153419680, 5.83699308421586957009743356438, 6.49355799416635682062590557172, 8.045121244945665489824348155326, 9.639052297294782058537734946572, 9.970040176592705477021283582162, 10.83570199408250277639351630810, 12.35734550950424575120935303681