Properties

Label 2-264-88.83-c1-0-19
Degree $2$
Conductor $264$
Sign $0.993 + 0.110i$
Analytic cond. $2.10805$
Root an. cond. $1.45191$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.31 − 0.515i)2-s + (0.809 + 0.587i)3-s + (1.46 − 1.35i)4-s + (2.47 + 0.803i)5-s + (1.36 + 0.357i)6-s + (−3.20 + 2.32i)7-s + (1.23 − 2.54i)8-s + (0.309 + 0.951i)9-s + (3.67 − 0.215i)10-s + (−3.14 + 1.04i)11-s + (1.98 − 0.233i)12-s + (−1.46 − 4.50i)13-s + (−3.02 + 4.71i)14-s + (1.52 + 2.10i)15-s + (0.318 − 3.98i)16-s + (−1.39 − 0.453i)17-s + ⋯
L(s)  = 1  + (0.931 − 0.364i)2-s + (0.467 + 0.339i)3-s + (0.734 − 0.678i)4-s + (1.10 + 0.359i)5-s + (0.558 + 0.145i)6-s + (−1.21 + 0.880i)7-s + (0.437 − 0.899i)8-s + (0.103 + 0.317i)9-s + (1.16 − 0.0681i)10-s + (−0.949 + 0.314i)11-s + (0.573 − 0.0675i)12-s + (−0.406 − 1.25i)13-s + (−0.808 + 1.26i)14-s + (0.394 + 0.543i)15-s + (0.0796 − 0.996i)16-s + (−0.338 − 0.110i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 + 0.110i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 + 0.110i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(264\)    =    \(2^{3} \cdot 3 \cdot 11\)
Sign: $0.993 + 0.110i$
Analytic conductor: \(2.10805\)
Root analytic conductor: \(1.45191\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{264} (259, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 264,\ (\ :1/2),\ 0.993 + 0.110i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.44479 - 0.135809i\)
\(L(\frac12)\) \(\approx\) \(2.44479 - 0.135809i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.31 + 0.515i)T \)
3 \( 1 + (-0.809 - 0.587i)T \)
11 \( 1 + (3.14 - 1.04i)T \)
good5 \( 1 + (-2.47 - 0.803i)T + (4.04 + 2.93i)T^{2} \)
7 \( 1 + (3.20 - 2.32i)T + (2.16 - 6.65i)T^{2} \)
13 \( 1 + (1.46 + 4.50i)T + (-10.5 + 7.64i)T^{2} \)
17 \( 1 + (1.39 + 0.453i)T + (13.7 + 9.99i)T^{2} \)
19 \( 1 + (0.733 - 1.00i)T + (-5.87 - 18.0i)T^{2} \)
23 \( 1 + 5.10iT - 23T^{2} \)
29 \( 1 + (-0.392 + 0.285i)T + (8.96 - 27.5i)T^{2} \)
31 \( 1 + (-7.31 + 2.37i)T + (25.0 - 18.2i)T^{2} \)
37 \( 1 + (-5.66 - 7.79i)T + (-11.4 + 35.1i)T^{2} \)
41 \( 1 + (-1.57 + 2.16i)T + (-12.6 - 38.9i)T^{2} \)
43 \( 1 - 5.05iT - 43T^{2} \)
47 \( 1 + (2.11 - 2.90i)T + (-14.5 - 44.6i)T^{2} \)
53 \( 1 + (11.1 - 3.61i)T + (42.8 - 31.1i)T^{2} \)
59 \( 1 + (11.2 - 8.16i)T + (18.2 - 56.1i)T^{2} \)
61 \( 1 + (-0.376 + 1.15i)T + (-49.3 - 35.8i)T^{2} \)
67 \( 1 - 11.4T + 67T^{2} \)
71 \( 1 + (-2.09 - 0.679i)T + (57.4 + 41.7i)T^{2} \)
73 \( 1 + (-4.46 - 6.14i)T + (-22.5 + 69.4i)T^{2} \)
79 \( 1 + (-3.63 - 11.1i)T + (-63.9 + 46.4i)T^{2} \)
83 \( 1 + (8.98 + 2.91i)T + (67.1 + 48.7i)T^{2} \)
89 \( 1 - 10.2T + 89T^{2} \)
97 \( 1 + (-0.629 - 1.93i)T + (-78.4 + 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.35734550950424575120935303681, −10.83570199408250277639351630810, −9.970040176592705477021283582162, −9.639052297294782058537734946572, −8.045121244945665489824348155326, −6.49355799416635682062590557172, −5.83699308421586957009743356438, −4.73152890581476657962153419680, −2.88585195415620940409552624740, −2.55921247226868910063816599912, 2.14579427016687170641817372436, 3.42674240463437091096489149160, 4.76633529813571482243457279734, 6.07009589470495075659926428438, 6.78580710116623128459153581288, 7.78655365868637954664280500916, 9.164538250437501917668259308779, 9.976244761216402824632159330847, 11.15465813769075542909751511702, 12.48008148176516323345510589869

Graph of the $Z$-function along the critical line