L(s) = 1 | + (−1.40 + 0.167i)2-s + (−0.309 + 0.951i)3-s + (1.94 − 0.471i)4-s + (−1.03 − 1.43i)5-s + (0.274 − 1.38i)6-s + (−0.430 − 1.32i)7-s + (−2.65 + 0.988i)8-s + (−0.809 − 0.587i)9-s + (1.70 + 1.83i)10-s + (−2.97 + 1.45i)11-s + (−0.152 + 1.99i)12-s + (−2.66 − 1.93i)13-s + (0.827 + 1.78i)14-s + (1.68 − 0.546i)15-s + (3.55 − 1.83i)16-s + (−2.21 − 3.05i)17-s + ⋯ |
L(s) = 1 | + (−0.992 + 0.118i)2-s + (−0.178 + 0.549i)3-s + (0.971 − 0.235i)4-s + (−0.464 − 0.639i)5-s + (0.111 − 0.566i)6-s + (−0.162 − 0.501i)7-s + (−0.936 + 0.349i)8-s + (−0.269 − 0.195i)9-s + (0.537 + 0.580i)10-s + (−0.898 + 0.439i)11-s + (−0.0439 + 0.575i)12-s + (−0.738 − 0.536i)13-s + (0.221 + 0.478i)14-s + (0.434 − 0.141i)15-s + (0.888 − 0.458i)16-s + (−0.537 − 0.740i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.491 + 0.870i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.491 + 0.870i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.152124 - 0.260570i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.152124 - 0.260570i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.40 - 0.167i)T \) |
| 3 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 + (2.97 - 1.45i)T \) |
good | 5 | \( 1 + (1.03 + 1.43i)T + (-1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (0.430 + 1.32i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (2.66 + 1.93i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (2.21 + 3.05i)T + (-5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (0.399 + 0.129i)T + (15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 1.44iT - 23T^{2} \) |
| 29 | \( 1 + (2.45 + 7.54i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-0.816 + 1.12i)T + (-9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (8.91 - 2.89i)T + (29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-3.29 - 1.06i)T + (33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 3.60iT - 43T^{2} \) |
| 47 | \( 1 + (0.727 + 0.236i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-2.54 + 3.50i)T + (-16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-3.69 - 11.3i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (8.45 - 6.14i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 9.95T + 67T^{2} \) |
| 71 | \( 1 + (-7.57 - 10.4i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (9.14 - 2.97i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (4.69 + 3.41i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (8.86 + 12.2i)T + (-25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 10.9T + 89T^{2} \) |
| 97 | \( 1 + (11.2 + 8.14i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.48366791419194479157629471381, −10.38587117604143172502757582264, −9.878007942088722700492325184012, −8.773260041818186146775386442514, −7.86419743563098861558370997261, −6.98384610412197938435324224721, −5.52220598541029104496977145557, −4.40530318528631985517910838775, −2.63808800402877671827281068397, −0.30328539145895062498561120081,
2.08656000579286150332395777641, 3.32682275094340826310450469354, 5.46630805833872679683698751033, 6.70026139726618308405666918712, 7.40173548848041209253618441895, 8.392483071627123604165243524849, 9.300212456750052114552435648741, 10.61930403723312885757439257133, 11.07548296995515149974046106630, 12.15980382861379398264439648719