L(s) = 1 | + (0.274 + 1.38i)2-s + (−0.309 + 0.951i)3-s + (−1.84 + 0.760i)4-s + (1.03 + 1.43i)5-s + (−1.40 − 0.167i)6-s + (0.430 + 1.32i)7-s + (−1.56 − 2.35i)8-s + (−0.809 − 0.587i)9-s + (−1.70 + 1.83i)10-s + (−2.97 + 1.45i)11-s + (−0.152 − 1.99i)12-s + (2.66 + 1.93i)13-s + (−1.72 + 0.961i)14-s + (−1.68 + 0.546i)15-s + (2.84 − 2.81i)16-s + (−2.21 − 3.05i)17-s + ⋯ |
L(s) = 1 | + (0.193 + 0.981i)2-s + (−0.178 + 0.549i)3-s + (−0.924 + 0.380i)4-s + (0.464 + 0.639i)5-s + (−0.573 − 0.0685i)6-s + (0.162 + 0.501i)7-s + (−0.552 − 0.833i)8-s + (−0.269 − 0.195i)9-s + (−0.537 + 0.580i)10-s + (−0.898 + 0.439i)11-s + (−0.0439 − 0.575i)12-s + (0.738 + 0.536i)13-s + (−0.460 + 0.256i)14-s + (−0.434 + 0.141i)15-s + (0.710 − 0.703i)16-s + (−0.537 − 0.740i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.959 - 0.281i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.959 - 0.281i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.165473 + 1.15126i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.165473 + 1.15126i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.274 - 1.38i)T \) |
| 3 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 + (2.97 - 1.45i)T \) |
good | 5 | \( 1 + (-1.03 - 1.43i)T + (-1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.430 - 1.32i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-2.66 - 1.93i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (2.21 + 3.05i)T + (-5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (0.399 + 0.129i)T + (15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 1.44iT - 23T^{2} \) |
| 29 | \( 1 + (-2.45 - 7.54i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (0.816 - 1.12i)T + (-9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-8.91 + 2.89i)T + (29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-3.29 - 1.06i)T + (33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 3.60iT - 43T^{2} \) |
| 47 | \( 1 + (-0.727 - 0.236i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (2.54 - 3.50i)T + (-16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-3.69 - 11.3i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-8.45 + 6.14i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 9.95T + 67T^{2} \) |
| 71 | \( 1 + (7.57 + 10.4i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (9.14 - 2.97i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-4.69 - 3.41i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (8.86 + 12.2i)T + (-25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 10.9T + 89T^{2} \) |
| 97 | \( 1 + (11.2 + 8.14i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.58458356061961734149803232203, −11.36502574384588544406086914989, −10.36672892225366797600084566083, −9.383583987327043585964400808459, −8.562238944882369151949140658497, −7.31403216567013205008075158033, −6.33648420683148327123730340534, −5.38823771603815011600757104560, −4.36704318570301974671182756265, −2.80594578507263664151203112678,
0.927456070732407382662824342853, 2.44401244053418153917761176697, 4.03707066901788072409470684649, 5.29817568629514564378586921685, 6.18006698531620900991898438165, 7.944094849478080293159501181980, 8.639423999706535837351241863454, 9.866880421423070860102994935613, 10.76298767783068760849663817605, 11.44745902992305133000550850948