L(s) = 1 | + (−1.23 + 0.684i)2-s + (−0.309 − 0.951i)3-s + (1.06 − 1.69i)4-s + (−0.409 + 0.563i)5-s + (1.03 + 0.965i)6-s + (−0.510 + 1.57i)7-s + (−0.154 + 2.82i)8-s + (−0.809 + 0.587i)9-s + (0.120 − 0.977i)10-s + (2.08 + 2.58i)11-s + (−1.93 − 0.486i)12-s + (4.92 − 3.57i)13-s + (−0.443 − 2.29i)14-s + (0.662 + 0.215i)15-s + (−1.74 − 3.60i)16-s + (2.23 − 3.07i)17-s + ⋯ |
L(s) = 1 | + (−0.874 + 0.484i)2-s + (−0.178 − 0.549i)3-s + (0.531 − 0.847i)4-s + (−0.183 + 0.251i)5-s + (0.421 + 0.394i)6-s + (−0.192 + 0.593i)7-s + (−0.0545 + 0.998i)8-s + (−0.269 + 0.195i)9-s + (0.0381 − 0.309i)10-s + (0.628 + 0.778i)11-s + (−0.559 − 0.140i)12-s + (1.36 − 0.991i)13-s + (−0.118 − 0.612i)14-s + (0.170 + 0.0555i)15-s + (−0.435 − 0.900i)16-s + (0.541 − 0.745i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.928 - 0.370i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.928 - 0.370i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.819054 + 0.157521i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.819054 + 0.157521i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.23 - 0.684i)T \) |
| 3 | \( 1 + (0.309 + 0.951i)T \) |
| 11 | \( 1 + (-2.08 - 2.58i)T \) |
good | 5 | \( 1 + (0.409 - 0.563i)T + (-1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (0.510 - 1.57i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-4.92 + 3.57i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-2.23 + 3.07i)T + (-5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-5.66 + 1.84i)T + (15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 8.64iT - 23T^{2} \) |
| 29 | \( 1 + (-1.33 + 4.10i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (4.09 + 5.64i)T + (-9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-2.02 - 0.657i)T + (29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.736 + 0.239i)T + (33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 10.1iT - 43T^{2} \) |
| 47 | \( 1 + (5.29 - 1.72i)T + (38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (2.57 + 3.54i)T + (-16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-3.78 + 11.6i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-0.239 - 0.174i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 10.7T + 67T^{2} \) |
| 71 | \( 1 + (-1.14 + 1.56i)T + (-21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (6.90 + 2.24i)T + (59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (2.76 - 2.01i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (1.90 - 2.62i)T + (-25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 6.63T + 89T^{2} \) |
| 97 | \( 1 + (3.48 - 2.53i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.55978565350312673645934430868, −11.32426092116759666666273396968, −9.790222441258491855820123287073, −9.225268040794541466940856813572, −7.901069684097776700296796362832, −7.32306174014754700355890110582, −6.13397384600209789706731493438, −5.34451541953277445943939327450, −3.13155817063571228743402982088, −1.32177870282027304935334540061,
1.15797002980278910296962231459, 3.36797870720603449987654365591, 4.18353769369132019417630501874, 6.05760183248650774071187814439, 7.05054620462381685647562549593, 8.542694838365066744022644882927, 8.865475921598723874269018496599, 10.20209999583844327720959120868, 10.75274066527777379174773008972, 11.69970454903436704967710222391