L(s) = 1 | + (1.31 − 0.525i)2-s + (0.809 − 0.587i)3-s + (1.44 − 1.37i)4-s + (−0.945 + 0.307i)5-s + (0.753 − 1.19i)6-s + (−1.02 − 0.742i)7-s + (1.17 − 2.57i)8-s + (0.309 − 0.951i)9-s + (−1.08 + 0.899i)10-s + (2.83 + 1.71i)11-s + (0.361 − 1.96i)12-s + (0.118 − 0.363i)13-s + (−1.73 − 0.438i)14-s + (−0.584 + 0.804i)15-s + (0.196 − 3.99i)16-s + (−2.87 + 0.932i)17-s + ⋯ |
L(s) = 1 | + (0.928 − 0.371i)2-s + (0.467 − 0.339i)3-s + (0.724 − 0.689i)4-s + (−0.422 + 0.137i)5-s + (0.307 − 0.488i)6-s + (−0.386 − 0.280i)7-s + (0.416 − 0.909i)8-s + (0.103 − 0.317i)9-s + (−0.341 + 0.284i)10-s + (0.855 + 0.517i)11-s + (0.104 − 0.567i)12-s + (0.0327 − 0.100i)13-s + (−0.463 − 0.117i)14-s + (−0.150 + 0.207i)15-s + (0.0492 − 0.998i)16-s + (−0.696 + 0.226i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.543 + 0.839i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.543 + 0.839i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.98400 - 1.07861i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.98400 - 1.07861i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.31 + 0.525i)T \) |
| 3 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 + (-2.83 - 1.71i)T \) |
good | 5 | \( 1 + (0.945 - 0.307i)T + (4.04 - 2.93i)T^{2} \) |
| 7 | \( 1 + (1.02 + 0.742i)T + (2.16 + 6.65i)T^{2} \) |
| 13 | \( 1 + (-0.118 + 0.363i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (2.87 - 0.932i)T + (13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (-0.491 - 0.676i)T + (-5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 - 9.25iT - 23T^{2} \) |
| 29 | \( 1 + (-2.76 - 2.00i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (4.33 + 1.40i)T + (25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (-1.20 + 1.66i)T + (-11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (4.83 + 6.65i)T + (-12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 - 2.32iT - 43T^{2} \) |
| 47 | \( 1 + (-5.10 - 7.02i)T + (-14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (-4.88 - 1.58i)T + (42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-5.26 - 3.82i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (3.29 + 10.1i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 - 1.94T + 67T^{2} \) |
| 71 | \( 1 + (10.6 - 3.47i)T + (57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-1.24 + 1.71i)T + (-22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-0.517 + 1.59i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (-1.38 + 0.449i)T + (67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 + 14.1T + 89T^{2} \) |
| 97 | \( 1 + (-2.73 + 8.41i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.90261687499648327089401526887, −11.19022844097363713279867608469, −9.991905202608260747223844739733, −9.108557532352722977097242805102, −7.53873005462575617481041810348, −6.86705440183840945108076043351, −5.67211424591379296373816861018, −4.15334627592890801400904727331, −3.36161454644742475163936532646, −1.73792670141848043232633929989,
2.55304832260115977084695477088, 3.80401709363061731001586680389, 4.67821829741297482961193936109, 6.10122040817036774522970207521, 6.96295619634236361753195257002, 8.281019485341155583547523139950, 8.938383533955321627767976798890, 10.34613441995068592871035251518, 11.45934368535474696546090623276, 12.17487080368742639978880154430