Properties

Label 4-60e4-1.1-c1e2-0-23
Degree $4$
Conductor $12960000$
Sign $1$
Analytic cond. $826.340$
Root an. cond. $5.36154$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·11-s + 8·19-s − 4·29-s + 16·31-s + 12·41-s − 2·49-s + 8·59-s − 4·61-s − 12·89-s − 12·101-s − 28·109-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  + 2.41·11-s + 1.83·19-s − 0.742·29-s + 2.87·31-s + 1.87·41-s − 2/7·49-s + 1.04·59-s − 0.512·61-s − 1.27·89-s − 1.19·101-s − 2.68·109-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(12960000\)    =    \(2^{8} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(826.340\)
Root analytic conductor: \(5.36154\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 12960000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.347712757\)
\(L(\frac12)\) \(\approx\) \(4.347712757\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \) 2.7.a_c
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \) 2.11.ai_bm
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \) 2.13.a_aw
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.17.a_abe
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \) 2.19.ai_cc
23$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \) 2.23.a_abe
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.29.e_ck
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \) 2.31.aq_ew
37$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \) 2.37.a_abm
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \) 2.41.am_eo
43$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \) 2.43.a_aw
47$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \) 2.47.a_ada
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \) 2.53.a_acs
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \) 2.59.ai_fe
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.61.e_ew
67$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \) 2.67.a_acs
71$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.71.a_fm
73$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) 2.73.a_aeg
79$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.79.a_gc
83$C_2^2$ \( 1 + 90 T^{2} + p^{2} T^{4} \) 2.83.a_dm
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.89.m_ig
97$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \) 2.97.a_c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.756690182490073496571882971275, −8.283218751804618055390832124147, −8.119898784655666189405058332104, −7.61417055690723521146936977285, −7.07314686727111333186257507816, −7.02526217526205429846404035764, −6.41115746029184021664929429370, −6.28478168718728176669131805769, −5.75677728092029600671672255477, −5.43807987370460199476076187177, −4.91982095288471812460619357280, −4.37265774165348561885646622034, −4.11306142573944759136807325809, −3.84799316883910091310946859413, −3.04063985223338772958822264983, −3.01827823657281266957111878357, −2.28168465702306408134097253236, −1.54488994964169664253341407905, −1.13116322332217725516239238654, −0.74834512719839418806093265630, 0.74834512719839418806093265630, 1.13116322332217725516239238654, 1.54488994964169664253341407905, 2.28168465702306408134097253236, 3.01827823657281266957111878357, 3.04063985223338772958822264983, 3.84799316883910091310946859413, 4.11306142573944759136807325809, 4.37265774165348561885646622034, 4.91982095288471812460619357280, 5.43807987370460199476076187177, 5.75677728092029600671672255477, 6.28478168718728176669131805769, 6.41115746029184021664929429370, 7.02526217526205429846404035764, 7.07314686727111333186257507816, 7.61417055690723521146936977285, 8.119898784655666189405058332104, 8.283218751804618055390832124147, 8.756690182490073496571882971275

Graph of the $Z$-function along the critical line