| L(s) = 1 | + 8·11-s + 8·19-s − 4·29-s + 16·31-s + 12·41-s − 2·49-s + 8·59-s − 4·61-s − 12·89-s − 12·101-s − 28·109-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
| L(s) = 1 | + 2.41·11-s + 1.83·19-s − 0.742·29-s + 2.87·31-s + 1.87·41-s − 2/7·49-s + 1.04·59-s − 0.512·61-s − 1.27·89-s − 1.19·101-s − 2.68·109-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(4.347712757\) |
| \(L(\frac12)\) |
\(\approx\) |
\(4.347712757\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.756690182490073496571882971275, −8.283218751804618055390832124147, −8.119898784655666189405058332104, −7.61417055690723521146936977285, −7.07314686727111333186257507816, −7.02526217526205429846404035764, −6.41115746029184021664929429370, −6.28478168718728176669131805769, −5.75677728092029600671672255477, −5.43807987370460199476076187177, −4.91982095288471812460619357280, −4.37265774165348561885646622034, −4.11306142573944759136807325809, −3.84799316883910091310946859413, −3.04063985223338772958822264983, −3.01827823657281266957111878357, −2.28168465702306408134097253236, −1.54488994964169664253341407905, −1.13116322332217725516239238654, −0.74834512719839418806093265630,
0.74834512719839418806093265630, 1.13116322332217725516239238654, 1.54488994964169664253341407905, 2.28168465702306408134097253236, 3.01827823657281266957111878357, 3.04063985223338772958822264983, 3.84799316883910091310946859413, 4.11306142573944759136807325809, 4.37265774165348561885646622034, 4.91982095288471812460619357280, 5.43807987370460199476076187177, 5.75677728092029600671672255477, 6.28478168718728176669131805769, 6.41115746029184021664929429370, 7.02526217526205429846404035764, 7.07314686727111333186257507816, 7.61417055690723521146936977285, 8.119898784655666189405058332104, 8.283218751804618055390832124147, 8.756690182490073496571882971275