Properties

Label 2.79.a_gc
Base field $\F_{79}$
Dimension $2$
$p$-rank $0$
Ordinary no
Supersingular yes
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{79}$
Dimension:  $2$
L-polynomial:  $( 1 + 79 x^{2} )^{2}$
  $1 + 158 x^{2} + 6241 x^{4}$
Frobenius angles:  $\pm0.5$, $\pm0.5$
Angle rank:  $0$ (numerical)
Jacobians:  $149$

This isogeny class is not simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2, 1/2, 1/2]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $6400$ $40960000$ $243088441600$ $1516136693760000$ $9468276088780960000$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $80$ $6558$ $493040$ $38925118$ $3077056400$ $243089427678$ $19203908986160$ $1517108654106238$ $119851595982618320$ $9468276094935072798$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 149 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{79^{2}}$.

Endomorphism algebra over $\F_{79}$
The isogeny class factors as 1.79.a 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-79}) \)$)$
Endomorphism algebra over $\overline{\F}_{79}$
The base change of $A$ to $\F_{79^{2}}$ is 1.6241.gc 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $79$ and $\infty$.

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.79.a_adb$3$(not in LMFDB)
2.79.a_agc$4$(not in LMFDB)
2.79.a_a$8$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.79.a_adb$3$(not in LMFDB)
2.79.a_agc$4$(not in LMFDB)
2.79.a_a$8$(not in LMFDB)
2.79.a_db$12$(not in LMFDB)