Invariants
| Base field: | $\F_{79}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $( 1 + 79 x^{2} )^{2}$ | 
| $1 + 158 x^{2} + 6241 x^{4}$ | |
| Frobenius angles: | $\pm0.5$, $\pm0.5$ | 
| Angle rank: | $0$ (numerical) | 
| Jacobians: | $149$ | 
This isogeny class is not simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is supersingular.
| $p$-rank: | $0$ | 
| Slopes: | $[1/2, 1/2, 1/2, 1/2]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6400$ | $40960000$ | $243088441600$ | $1516136693760000$ | $9468276088780960000$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $80$ | $6558$ | $493040$ | $38925118$ | $3077056400$ | $243089427678$ | $19203908986160$ | $1517108654106238$ | $119851595982618320$ | $9468276094935072798$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 149 curves (of which all are hyperelliptic):
- $y^2=x^5+78$
- $y^2=3 x^5+76$
- $y^2=16 x^6+x^5+16 x^4+9 x^3+62 x^2+53 x+10$
- $y^2=48 x^6+3 x^5+48 x^4+27 x^3+28 x^2+x+30$
- $y^2=67 x^6+50 x^5+23 x^4+78 x^3+37 x^2+3 x+33$
- $y^2=43 x^6+71 x^5+69 x^4+76 x^3+32 x^2+9 x+20$
- $y^2=66 x^6+72 x^5+7 x^4+22 x^3+48 x^2+50 x+60$
- $y^2=40 x^6+58 x^5+21 x^4+66 x^3+65 x^2+71 x+22$
- $y^2=76 x^6+60 x^5+44 x^4+73 x^3+74 x^2+55 x+34$
- $y^2=70 x^6+22 x^5+53 x^4+61 x^3+64 x^2+7 x+23$
- $y^2=58 x^6+11 x^5+21 x^3+9 x+57$
- $y^2=16 x^6+33 x^5+63 x^3+27 x+13$
- $y^2=40 x^6+47 x^5+39 x^4+7 x^3+39 x^2+47 x+40$
- $y^2=41 x^6+62 x^5+38 x^4+21 x^3+38 x^2+62 x+41$
- $y^2=29 x^6+39 x^5+31 x^4+7 x^3+12 x^2+32 x+37$
- $y^2=8 x^6+38 x^5+14 x^4+21 x^3+36 x^2+17 x+32$
- $y^2=12 x^6+28 x^5+5 x^4+29 x^3+2 x^2+74 x+33$
- $y^2=36 x^6+5 x^5+15 x^4+8 x^3+6 x^2+64 x+20$
- $y^2=59 x^6+23 x^5+70 x^4+13 x^3+70 x^2+23 x+59$
- $y^2=19 x^6+69 x^5+52 x^4+39 x^3+52 x^2+69 x+19$
- and 129 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{2}}$.
Endomorphism algebra over $\F_{79}$| The isogeny class factors as 1.79.a 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-79}) \)$)$ | 
| The base change of $A$ to $\F_{79^{2}}$ is 1.6241.gc 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $79$ and $\infty$. | 
Base change
This is a primitive isogeny class.
