Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 70 x^{2} + 4489 x^{4}$ |
Frobenius angles: | $\pm0.162520626193$, $\pm0.837479373807$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{51})\) |
Galois group: | $C_2^2$ |
Jacobians: | $276$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4420$ | $19536400$ | $90458981860$ | $406232087040000$ | $1822837803516804100$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $68$ | $4350$ | $300764$ | $20159278$ | $1350125108$ | $90459581550$ | $6060711605324$ | $406067724900958$ | $27206534396294948$ | $1822837802481846750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 276 curves (of which all are hyperelliptic):
- $y^2=2 x^6+36 x^5+53 x^4+16 x^3+25 x+38$
- $y^2=22 x^6+39 x^5+51 x^4+3 x^3+10 x^2+10 x+42$
- $y^2=38 x^6+35 x^5+4 x^4+59 x^3+43 x^2+57 x+32$
- $y^2=9 x^6+3 x^5+8 x^4+51 x^3+19 x^2+47 x+64$
- $y^2=24 x^6+53 x^5+62 x^4+32 x^3+7 x^2+16 x+66$
- $y^2=45 x^6+x^5+31 x^4+60 x^3+61 x^2+59 x+8$
- $y^2=2 x^6+x^5+19 x^4+36 x^3+26 x^2+35 x+1$
- $y^2=4 x^6+2 x^5+38 x^4+5 x^3+52 x^2+3 x+2$
- $y^2=3 x^6+2 x^4+31 x^3+50 x^2+24 x+35$
- $y^2=6 x^6+4 x^4+62 x^3+33 x^2+48 x+3$
- $y^2=43 x^6+49 x^5+41 x^4+64 x^3+49 x^2+12 x+51$
- $y^2=19 x^6+31 x^5+15 x^4+61 x^3+31 x^2+24 x+35$
- $y^2=64 x^6+x^5+54 x^4+33 x^3+41 x^2+14 x$
- $y^2=61 x^6+2 x^5+41 x^4+66 x^3+15 x^2+28 x$
- $y^2=32 x^6+40 x^5+46 x^4+38 x^3+21 x^2+5 x+60$
- $y^2=64 x^6+13 x^5+25 x^4+9 x^3+42 x^2+10 x+53$
- $y^2=52 x^6+18 x^5+61 x^4+42 x^3+4 x^2+13 x+44$
- $y^2=37 x^6+36 x^5+55 x^4+17 x^3+8 x^2+26 x+21$
- $y^2=36 x^6+24 x^5+28 x^4+12 x^3+56 x+3$
- $y^2=5 x^6+48 x^5+56 x^4+24 x^3+45 x+6$
- and 256 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{2}}$.
Endomorphism algebra over $\F_{67}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{51})\). |
The base change of $A$ to $\F_{67^{2}}$ is 1.4489.acs 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-51}) \)$)$ |
Base change
This is a primitive isogeny class.