Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 22 x^{2} + 1849 x^{4}$ |
| Frobenius angles: | $\pm0.208828274828$, $\pm0.791171725172$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\zeta_{12})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $184$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1828$ | $3341584$ | $6321474436$ | $11710193504256$ | $21611482030503268$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $44$ | $1806$ | $79508$ | $3425230$ | $147008444$ | $6321585822$ | $271818611108$ | $11688193293214$ | $502592611936844$ | $21611481747722286$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 184 curves (of which all are hyperelliptic):
- $y^2=11 x^6+23 x^5+25 x^4+9 x^3+18 x^2+19 x+6$
- $y^2=33 x^6+26 x^5+32 x^4+27 x^3+11 x^2+14 x+18$
- $y^2=42 x^6+34 x^5+27 x^4+20 x^3+10 x^2+16 x+32$
- $y^2=40 x^6+16 x^5+38 x^4+17 x^3+30 x^2+5 x+10$
- $y^2=14 x^6+19 x^5+10 x^4+29 x^3+2 x^2+30 x+18$
- $y^2=15 x^6+18 x^5+38 x^4+22 x^3+12 x^2+28 x+30$
- $y^2=28 x^6+22 x^5+24 x^4+31 x^3+39 x^2+38 x+29$
- $y^2=41 x^6+23 x^5+29 x^4+7 x^3+31 x^2+28 x+1$
- $y^2=14 x^6+35 x^5+40 x^4+41 x^3+40 x^2+15 x+28$
- $y^2=42 x^6+19 x^5+34 x^4+37 x^3+34 x^2+2 x+41$
- $y^2=x^6+40 x^5+42 x^4+12 x^3+x^2+40 x+42$
- $y^2=24 x^6+6 x^5+16 x^4+16 x^3+42 x^2+40 x+33$
- $y^2=13 x^6+18 x^5+6 x^4+14 x^3+31 x^2+2 x+22$
- $y^2=27 x^6+30 x^5+25 x^4+21 x^3+11 x^2+26 x+36$
- $y^2=38 x^6+4 x^5+32 x^4+20 x^3+33 x^2+35 x+22$
- $y^2=38 x^6+18 x^5+5 x^4+32 x^3+10 x^2+21$
- $y^2=28 x^6+11 x^5+15 x^4+10 x^3+30 x^2+20$
- $y^2=20 x^6+21 x^5+27 x^4+16 x^3+27 x^2+29 x+1$
- $y^2=29 x^6+17 x^5+10 x^4+12 x^3+12 x^2+9 x+25$
- $y^2=13 x^6+26 x^5+15 x^4+41 x^3+38 x^2+19 x+11$
- and 164 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{2}}$.
Endomorphism algebra over $\F_{43}$| The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{12})\). |
| The base change of $A$ to $\F_{43^{2}}$ is 1.1849.aw 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.