Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 2 x + 29 x^{2} )^{2}$ |
$1 + 4 x + 62 x^{2} + 116 x^{3} + 841 x^{4}$ | |
Frobenius angles: | $\pm0.559453748998$, $\pm0.559453748998$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $20$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1024$ | $802816$ | $586802176$ | $498503778304$ | $421006051738624$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $34$ | $950$ | $24058$ | $704814$ | $20525714$ | $594865766$ | $17249369066$ | $500246196574$ | $14507161118722$ | $420707209289750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=23 x^6+9 x^5+3 x^4+24 x^3+3 x^2+9 x+23$
- $y^2=14 x^6+16 x^5+22 x^4+8 x^3+13 x^2+10 x+24$
- $y^2=16 x^6+21 x^5+18 x^4+21 x^3+11 x^2+18 x+1$
- $y^2=22 x^6+18 x^5+8 x^4+26 x^3+8 x^2+18 x+22$
- $y^2=7 x^6+10 x^4+10 x^2+7$
- $y^2=12 x^6+6 x^5+15 x^4+16 x^3+15 x^2+6 x+12$
- $y^2=21 x^6+22 x^5+3 x^4+23 x^3+3 x^2+22 x+21$
- $y^2=21 x^6+16 x^5+11 x^4+10 x^2+28 x+7$
- $y^2=6 x^6+15 x^4+15 x^2+6$
- $y^2=14 x^6+24 x^5+8 x^4+21 x^3+8 x^2+24 x+14$
- $y^2=19 x^6+20 x^5+20 x^4+16 x^3+16 x^2+x+27$
- $y^2=x^6+16 x^5+20 x^4+24 x^3+20 x^2+16 x+1$
- $y^2=21 x^6+19 x^4+19 x^2+21$
- $y^2=5 x^6+15 x^5+21 x^4+4 x^3+21 x^2+15 x+5$
- $y^2=23 x^6+22 x^5+23 x^4+26 x^3+23 x^2+22 x+23$
- $y^2=18 x^6+19 x^5+15 x^4+13 x^3+26 x^2+x+4$
- $y^2=15 x^6+28 x^4+28 x^2+15$
- $y^2=28 x^6+20 x^5+10 x^4+26 x^3+10 x^2+20 x+28$
- $y^2=17 x^6+18 x^5+4 x^4+5 x^3+9 x^2+11 x+14$
- $y^2=19 x^6+8 x^5+11 x^4+19 x^3+11 x^2+8 x+19$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The isogeny class factors as 1.29.c 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$ |
Base change
This is a primitive isogeny class.