L(s) = 1 | + 2·9-s − 8·11-s − 2·25-s − 4·29-s − 20·37-s − 8·43-s − 12·53-s + 24·67-s − 16·79-s − 5·81-s − 16·99-s − 24·107-s − 4·109-s + 20·113-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 18·169-s + 173-s + 179-s + ⋯ |
L(s) = 1 | + 2/3·9-s − 2.41·11-s − 2/5·25-s − 0.742·29-s − 3.28·37-s − 1.21·43-s − 1.64·53-s + 2.93·67-s − 1.80·79-s − 5/9·81-s − 1.60·99-s − 2.32·107-s − 0.383·109-s + 1.88·113-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.38·169-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9834496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9834496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.434520498618258128084172296659, −8.191042881382082392551978094233, −7.77671276225346516113571040562, −7.29361168457613831441277568071, −7.15918213822715456212138337468, −6.71970893035379121009720877414, −6.25637909547117129480387369248, −5.71319751657130402676879938331, −5.31619000780868682975687138472, −5.06517989502424964369175902724, −4.86431677435581061504887168048, −4.19019144479728860513926098522, −3.57509259917546250621529482784, −3.44917693916690013647662235062, −2.74640207550887347679169458151, −2.35456797228664862766580065174, −1.80167898873644632512393059908, −1.33298917568129315587963758165, 0, 0,
1.33298917568129315587963758165, 1.80167898873644632512393059908, 2.35456797228664862766580065174, 2.74640207550887347679169458151, 3.44917693916690013647662235062, 3.57509259917546250621529482784, 4.19019144479728860513926098522, 4.86431677435581061504887168048, 5.06517989502424964369175902724, 5.31619000780868682975687138472, 5.71319751657130402676879938331, 6.25637909547117129480387369248, 6.71970893035379121009720877414, 7.15918213822715456212138337468, 7.29361168457613831441277568071, 7.77671276225346516113571040562, 8.191042881382082392551978094233, 8.434520498618258128084172296659