Invariants
| Base field: | $\F_{31}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 30 x^{2} + 961 x^{4}$ |
| Frobenius angles: | $\pm0.330384799278$, $\pm0.669615200722$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{2}, \sqrt{-23})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $130$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $992$ | $984064$ | $887444192$ | $854781607936$ | $819628320073952$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $32$ | $1022$ | $29792$ | $925566$ | $28629152$ | $887384702$ | $27512614112$ | $852892642558$ | $26439622160672$ | $819628353167102$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 130 curves (of which all are hyperelliptic):
- $y^2=28 x^6+26 x^5+26 x^4+24 x^3+22 x^2+6 x+2$
- $y^2=13 x^5+17 x^4+20 x^3+16 x^2+9 x$
- $y^2=8 x^5+20 x^4+29 x^3+17 x^2+27 x$
- $y^2=22 x^6+26 x^5+13 x^4+26 x^3+16 x^2+30 x+20$
- $y^2=14 x^6+6 x^5+21 x^4+19 x^3+21 x^2+12 x+30$
- $y^2=11 x^6+18 x^5+x^4+26 x^3+x^2+5 x+28$
- $y^2=9 x^6+x^5+2 x^4+16 x^3+24 x^2+20 x+21$
- $y^2=8 x^6+5 x^5+24 x^3+21 x^2+18 x+24$
- $y^2=8 x^6+14 x^5+21 x^4+4 x^3+5 x+4$
- $y^2=24 x^6+11 x^5+x^4+12 x^3+15 x+12$
- $y^2=x^6+24 x^5+30 x^4+16 x^3+7 x^2+29 x+29$
- $y^2=10 x^5+3 x^4+9 x^3+4 x^2+30 x+1$
- $y^2=30 x^5+9 x^4+27 x^3+12 x^2+28 x+3$
- $y^2=2 x^6+20 x^5+25 x^4+13 x^2+6 x+23$
- $y^2=20 x^6+17 x^5+14 x^4+27 x^3+14 x^2+22 x+15$
- $y^2=29 x^6+20 x^5+11 x^4+19 x^3+11 x^2+4 x+14$
- $y^2=20 x^6+22 x^5+18 x^4+4 x^3+27 x^2+3 x+21$
- $y^2=11 x^6+24 x^5+12 x^4+22 x^3+18 x^2+21 x$
- $y^2=2 x^6+10 x^5+5 x^4+4 x^3+23 x^2+x$
- $y^2=4 x^6+14 x^5+19 x^4+22 x^3+30 x^2+27 x+15$
- and 110 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31^{2}}$.
Endomorphism algebra over $\F_{31}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{2}, \sqrt{-23})\). |
| The base change of $A$ to $\F_{31^{2}}$ is 1.961.be 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-46}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.31.a_abe | $4$ | (not in LMFDB) |
| 2.31.ai_bg | $8$ | (not in LMFDB) |
| 2.31.i_bg | $8$ | (not in LMFDB) |