Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 50 x^{2} + 1681 x^{4}$ |
| Frobenius angles: | $\pm0.354366303666$, $\pm0.645633696334$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{2}, \sqrt{-33})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $212$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1732$ | $2999824$ | $4749977092$ | $7989803237376$ | $13422659278467652$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $42$ | $1782$ | $68922$ | $2827486$ | $115856202$ | $4749849942$ | $194754273882$ | $7984935046078$ | $327381934393962$ | $13422659246782902$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 212 curves (of which all are hyperelliptic):
- $y^2=6 x^6+4 x^5+15 x^4+x^3+23 x^2+15 x+32$
- $y^2=36 x^6+24 x^5+8 x^4+6 x^3+15 x^2+8 x+28$
- $y^2=14 x^6+22 x^5+13 x^4+16 x^3+21 x^2+29 x+28$
- $y^2=2 x^6+9 x^5+37 x^4+14 x^3+3 x^2+10 x+4$
- $y^2=17 x^6+3 x^5+30 x^4+6 x^3+9 x^2+22 x+21$
- $y^2=40 x^6+23 x^5+4 x^4+15 x^3+23 x^2+6 x+22$
- $y^2=35 x^6+15 x^5+24 x^4+8 x^3+15 x^2+36 x+9$
- $y^2=13 x^6+17 x^5+27 x^4+39 x^2+3 x+20$
- $y^2=27 x^6+9 x^5+37 x^4+27 x^3+11 x^2+4 x+8$
- $y^2=9 x^6+11 x^5+27 x^4+16 x^3+30 x^2+3 x+36$
- $y^2=13 x^6+25 x^5+39 x^4+14 x^3+16 x^2+18 x+11$
- $y^2=8 x^6+31 x^5+13 x^4+10 x^3+40 x^2+39 x+27$
- $y^2=36 x^6+39 x^5+20 x^4+36 x^3+7 x^2+12 x+17$
- $y^2=11 x^6+29 x^5+38 x^4+11 x^3+x^2+31 x+20$
- $y^2=32 x^6+29 x^5+10 x^3+22 x+30$
- $y^2=3 x^6+31 x^5+28 x^4+31 x^3+13 x^2+16 x+4$
- $y^2=18 x^6+22 x^5+4 x^4+22 x^3+37 x^2+14 x+24$
- $y^2=33 x^6+13 x^5+29 x^4+37 x^3+15 x^2+29 x+24$
- $y^2=34 x^6+37 x^5+10 x^4+17 x^3+8 x^2+10 x+21$
- $y^2=x^5+22 x^4+40 x^3+14 x^2+10 x+23$
- and 192 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41^{2}}$.
Endomorphism algebra over $\F_{41}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{2}, \sqrt{-33})\). |
| The base change of $A$ to $\F_{41^{2}}$ is 1.1681.by 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-66}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.41.a_aby | $4$ | (not in LMFDB) |
| 2.41.ai_bg | $8$ | (not in LMFDB) |
| 2.41.i_bg | $8$ | (not in LMFDB) |