| L(s) = 1 | − 4·9-s − 8·13-s + 8·19-s − 2·25-s − 16·43-s − 24·47-s + 4·49-s + 12·53-s − 8·67-s + 7·81-s + 24·89-s + 24·101-s + 16·103-s + 32·117-s − 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s − 32·171-s + 173-s + ⋯ |
| L(s) = 1 | − 4/3·9-s − 2.21·13-s + 1.83·19-s − 2/5·25-s − 2.43·43-s − 3.50·47-s + 4/7·49-s + 1.64·53-s − 0.977·67-s + 7/9·81-s + 2.54·89-s + 2.38·101-s + 1.57·103-s + 2.95·117-s − 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s − 2.44·171-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1336336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1336336 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.8038169736\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8038169736\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.820877248678741021078435099738, −9.806659782136573992683484014266, −9.153738336732082472298771937418, −8.850512460665911147027130168836, −8.338225501505206698232318866957, −7.901294660531445487099182815004, −7.46344545170066672053081768118, −7.33946890035512570644735160509, −6.49734584134990517404672004472, −6.42271118336186390398577121267, −5.61934534289812197648321761758, −5.22872066783070798966580779269, −4.94950968454369140916999574618, −4.64936564913410898075509567553, −3.54592161603304460229851009899, −3.38064501830856532421279783834, −2.76411928992495034613453385642, −2.28118485285684843309267136820, −1.55847171028009317779759272436, −0.37814415421150650269067730868,
0.37814415421150650269067730868, 1.55847171028009317779759272436, 2.28118485285684843309267136820, 2.76411928992495034613453385642, 3.38064501830856532421279783834, 3.54592161603304460229851009899, 4.64936564913410898075509567553, 4.94950968454369140916999574618, 5.22872066783070798966580779269, 5.61934534289812197648321761758, 6.42271118336186390398577121267, 6.49734584134990517404672004472, 7.33946890035512570644735160509, 7.46344545170066672053081768118, 7.901294660531445487099182815004, 8.338225501505206698232318866957, 8.850512460665911147027130168836, 9.153738336732082472298771937418, 9.806659782136573992683484014266, 9.820877248678741021078435099738