Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 97 x^{2} )^{2}$ |
$1 + 194 x^{2} + 9409 x^{4}$ | |
Frobenius angles: | $\pm0.5$, $\pm0.5$ |
Angle rank: | $0$ (numerical) |
Jacobians: | $63$ |
This isogeny class is not simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is supersingular.
$p$-rank: | $0$ |
Slopes: | $[1/2, 1/2, 1/2, 1/2]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9604$ | $92236816$ | $832973830276$ | $7834102237495296$ | $73742412706667506564$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $98$ | $9798$ | $912674$ | $88491646$ | $8587340258$ | $832975655622$ | $80798284478114$ | $7837433240259838$ | $760231058654565218$ | $73742412723842187078$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 63 curves (of which all are hyperelliptic):
- $y^2=82 x^6+11 x^5+86 x^4+42 x^2+81 x+65$
- $y^2=33 x^6+91 x^5+92 x^4+68 x^3+67 x^2+61 x+96$
- $y^2=74 x^6+30 x^5+33 x^4+68 x^2+26 x+35$
- $y^2=44 x^6+81 x^5+78 x^4+44 x^3+31 x^2+69 x+38$
- $y^2=26 x^6+17 x^5+2 x^4+26 x^3+58 x^2+54 x+93$
- $y^2=48 x^6+74 x^5+14 x^4+51 x^3+65 x^2+58 x+17$
- $y^2=67 x^6+26 x^5+14 x^4+70 x^2+29 x+33$
- $y^2=38 x^6+23 x^5+86 x^4+45 x^3+13 x^2+23 x+92$
- $y^2=9 x^6+41 x^5+47 x^4+62 x^3+26 x^2+10 x+14$
- $y^2=82 x^6+90 x^5+32 x^4+36 x^3+96 x+31$
- $y^2=22 x^6+62 x^5+63 x^4+83 x^3+92 x+58$
- $y^2=74 x^6+62 x^5+37 x^3+93 x^2+74 x+39$
- $y^2=79 x^6+19 x^5+88 x^3+77 x^2+79 x+1$
- $y^2=15 x^6+7 x^5+53 x^4+15 x^3+47 x^2+87 x+21$
- $y^2=75 x^6+35 x^5+71 x^4+75 x^3+41 x^2+47 x+8$
- $y^2=29 x^6+87 x^5+78 x^4+70 x^3+78 x^2+87 x+29$
- $y^2=48 x^6+47 x^5+2 x^4+59 x^3+2 x^2+47 x+48$
- $y^2=44 x^6+2 x^5+86 x^4+27 x^3+61 x^2+58 x+86$
- $y^2=26 x^6+10 x^5+42 x^4+38 x^3+14 x^2+96 x+42$
- $y^2=93 x^6+28 x^4+28 x^2+93$
- and 43 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97^{2}}$.
Endomorphism algebra over $\F_{97}$The isogeny class factors as 1.97.a 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-97}) \)$)$ |
The base change of $A$ to $\F_{97^{2}}$ is 1.9409.hm 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $97$ and $\infty$. |
Base change
This is a primitive isogeny class.