Invariants
Base field: | $\F_{13}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 4 x + 13 x^{2} )^{2}$ |
$1 + 8 x + 42 x^{2} + 104 x^{3} + 169 x^{4}$ | |
Frobenius angles: | $\pm0.687167041811$, $\pm0.687167041811$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $5$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $324$ | $32400$ | $4435236$ | $829440000$ | $138040485444$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $22$ | $190$ | $2014$ | $29038$ | $371782$ | $4818670$ | $62774734$ | $815731678$ | $10604154742$ | $137859857950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which all are hyperelliptic):
- $y^2=x^6+x^3+12$
- $y^2=7 x^6+9 x^5+3 x^4+11 x^3+3 x^2+9 x+7$
- $y^2=x^6+4 x^3+12$
- $y^2=9 x^6+4 x^5+3 x^4+6 x^3+3 x^2+4 x+9$
- $y^2=x^6+11 x^4+11 x^2+1$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{13}$.
Endomorphism algebra over $\F_{13}$The isogeny class factors as 1.13.e 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
Base change
This is a primitive isogeny class.