Invariants
| Base field: | $\F_{29}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 50 x^{2} + 841 x^{4}$ |
| Frobenius angles: | $\pm0.415415794385$, $\pm0.584584205615$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{2}, \sqrt{-3})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $62$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $892$ | $795664$ | $594822172$ | $499091383296$ | $420707196995452$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $30$ | $942$ | $24390$ | $705646$ | $20511150$ | $594821022$ | $17249876310$ | $500247903838$ | $14507145975870$ | $420707160690702$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 62 curves (of which all are hyperelliptic):
- $y^2=20 x^6+20 x^5+19 x^4+9 x^2+7 x+15$
- $y^2=3 x^6+15 x^5+3 x^4+28 x^3+16 x^2+9 x+12$
- $y^2=6 x^6+x^5+6 x^4+27 x^3+3 x^2+18 x+24$
- $y^2=26 x^5+x^4+12 x^3+23 x^2+8 x+5$
- $y^2=23 x^5+2 x^4+24 x^3+17 x^2+16 x+10$
- $y^2=12 x^6+20 x^5+20 x^4+14 x^3+3 x^2+28 x+6$
- $y^2=16 x^6+2 x^5+12 x^4+27 x^3+2 x^2+20 x+26$
- $y^2=3 x^6+4 x^5+24 x^4+25 x^3+4 x^2+11 x+23$
- $y^2=7 x^6+8 x^5+10 x^4+x^3+17 x^2+23 x+23$
- $y^2=14 x^6+16 x^5+20 x^4+2 x^3+5 x^2+17 x+17$
- $y^2=3 x^6+3 x^5+14 x^4+18 x^3+9 x^2+15 x+20$
- $y^2=28 x^6+21 x^5+26 x^4+23 x^3+20 x^2+15 x+2$
- $y^2=2 x^6+9 x^5+17 x^3+25 x+20$
- $y^2=28 x^6+10 x^5+7 x^4+x^3+12 x^2+14 x+15$
- $y^2=8 x^6+x^5+22 x^4+20 x^3+12 x^2+3 x+21$
- $y^2=16 x^6+2 x^5+15 x^4+11 x^3+24 x^2+6 x+13$
- $y^2=24 x^6+8 x^5+14 x^4+22 x^3+4 x^2+24 x+22$
- $y^2=19 x^6+16 x^5+28 x^4+15 x^3+8 x^2+19 x+15$
- $y^2=27 x^5+10 x^4+15 x^3+x^2+11 x$
- $y^2=13 x^6+15 x^5+13 x^4+23 x^3+19 x^2+20 x+26$
- and 42 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29^{2}}$.
Endomorphism algebra over $\F_{29}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{2}, \sqrt{-3})\). |
| The base change of $A$ to $\F_{29^{2}}$ is 1.841.by 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-6}) \)$)$ |
Base change
This is a primitive isogeny class.