Invariants
| Base field: | $\F_{11}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 20 x^{2} + 121 x^{4}$ |
| Frobenius angles: | $\pm0.431611174087$, $\pm0.568388825913$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{2}, \sqrt{-21})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $6$ |
| Isomorphism classes: | 8 |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $142$ | $20164$ | $1772302$ | $209786256$ | $25937248702$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $12$ | $162$ | $1332$ | $14326$ | $161052$ | $1773042$ | $19487172$ | $214367518$ | $2357947692$ | $25937072802$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which all are hyperelliptic):
- $y^2=6 x^6+2 x^5+8 x^4+4 x^3+6 x^2+9 x+7$
- $y^2=x^6+4 x^5+5 x^4+8 x^3+x^2+7 x+3$
- $y^2=x^6+7 x^5+6 x^4+x^2+5 x+8$
- $y^2=5 x^6+2 x^5+9 x^4+5 x^3+2 x^2+3 x+8$
- $y^2=10 x^6+4 x^5+7 x^4+10 x^3+4 x^2+6 x+5$
- $y^2=6 x^6+10 x^5+4 x+4$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{11^{2}}$.
Endomorphism algebra over $\F_{11}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{2}, \sqrt{-21})\). |
| The base change of $A$ to $\F_{11^{2}}$ is 1.121.u 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-21}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.11.a_au | $4$ | (not in LMFDB) |
| 2.11.ac_c | $8$ | (not in LMFDB) |
| 2.11.c_c | $8$ | (not in LMFDB) |