Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 8 x + 43 x^{2} )^{2}$ |
| $1 + 16 x + 150 x^{2} + 688 x^{3} + 1849 x^{4}$ | |
| Frobenius angles: | $\pm0.708828274828$, $\pm0.708828274828$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $25$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 13$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2704$ | $3504384$ | $6239104144$ | $11710193504256$ | $21610497073928464$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $60$ | $1894$ | $78468$ | $3425230$ | $147001740$ | $6321140278$ | $271820681556$ | $11688193293214$ | $502592578782684$ | $21611482878846214$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 25 curves (of which all are hyperelliptic):
- $y^2=15 x^6+19 x^5+36 x^4+16 x^3+36 x^2+22 x+6$
- $y^2=3 x^6+5$
- $y^2=3 x^6+29 x^3+20$
- $y^2=32 x^6+21 x^5+23 x^4+36 x^3+4 x^2+6 x+8$
- $y^2=38 x^5+16 x^4+26 x^3+19 x^2+3 x+11$
- $y^2=2 x^6+41 x^5+3 x^4+39 x^3+18 x^2+14 x+2$
- $y^2=3 x^6+2 x^3+20$
- $y^2=35 x^6+5 x^4+5 x^2+35$
- $y^2=9 x^6+21 x^5+22 x^4+41 x^3+22 x^2+3 x+40$
- $y^2=7 x^6+32 x^4+32 x^2+7$
- $y^2=36 x^6+17 x^5+15 x^4+6 x^3+15 x^2+17 x+36$
- $y^2=4 x^6+42 x^5+5 x^4+32 x^3+5 x^2+42 x+4$
- $y^2=3 x^6+28 x^3+12$
- $y^2=15 x^6+11 x^5+15 x^4+22 x^3+3 x^2+9 x+9$
- $y^2=40 x^6+42 x^5+3 x^4+22 x^3+3 x^2+42 x+40$
- $y^2=3 x^6+27 x^3+37$
- $y^2=8 x^6+16 x^5+13 x^4+29 x^3+11 x^2+14 x+39$
- $y^2=36 x^5+19 x^4+30 x^3+19 x^2+36 x$
- $y^2=36 x^6+31 x^5+33 x^4+31 x^3+22 x^2+9 x+25$
- $y^2=4 x^6+18 x^5+26 x^4+5 x^3+26 x^2+18 x+4$
- $y^2=7 x^6+6 x^4+13 x^3+6 x^2+7$
- $y^2=40 x^6+7 x^5+38 x^4+19 x^3+5 x^2+31 x+38$
- $y^2=7 x^6+23 x^5+29 x^4+2 x^3+39 x^2+32 x+4$
- $y^2=18 x^6+x^5+33 x^4+19 x^3+33 x^2+x+18$
- $y^2=38 x^6+6 x^4+6 x^2+38$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$| The isogeny class factors as 1.43.i 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.