Properties

Label 2.89.ay_mk
Base field $\F_{89}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{89}$
Dimension:  $2$
L-polynomial:  $( 1 - 12 x + 89 x^{2} )^{2}$
  $1 - 24 x + 322 x^{2} - 2136 x^{3} + 7921 x^{4}$
Frobenius angles:  $\pm0.280588346245$, $\pm0.280588346245$
Angle rank:  $1$ (numerical)
Jacobians:  $63$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $6084$ $63297936$ $499065950916$ $3938432011997184$ $31182221034306245124$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $66$ $7990$ $707922$ $62771614$ $5584149186$ $496979753686$ $44231308461714$ $3936588625313854$ $350356403895436098$ $31181719948276146550$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 63 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{89}$.

Endomorphism algebra over $\F_{89}$
The isogeny class factors as 1.89.am 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-53}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.a_bi$2$(not in LMFDB)
2.89.y_mk$2$(not in LMFDB)
2.89.m_cd$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.a_bi$2$(not in LMFDB)
2.89.y_mk$2$(not in LMFDB)
2.89.m_cd$3$(not in LMFDB)
2.89.a_abi$4$(not in LMFDB)
2.89.am_cd$6$(not in LMFDB)