Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 12 x + 89 x^{2} )^{2}$ |
$1 - 24 x + 322 x^{2} - 2136 x^{3} + 7921 x^{4}$ | |
Frobenius angles: | $\pm0.280588346245$, $\pm0.280588346245$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $63$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6084$ | $63297936$ | $499065950916$ | $3938432011997184$ | $31182221034306245124$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $66$ | $7990$ | $707922$ | $62771614$ | $5584149186$ | $496979753686$ | $44231308461714$ | $3936588625313854$ | $350356403895436098$ | $31181719948276146550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 63 curves (of which all are hyperelliptic):
- $y^2=77 x^6+31 x^5+69 x^4+53 x^3+50 x^2+38 x+54$
- $y^2=41 x^6+3 x^5+6 x^4+44 x^3+48 x^2+22 x+2$
- $y^2=85 x^6+80 x^5+38 x^4+2 x^3+76 x^2+53 x+57$
- $y^2=63 x^6+63 x^5+19 x^4+68 x^3+19 x^2+63 x+63$
- $y^2=58 x^6+77 x^5+60 x^4+68 x^3+29 x^2+39 x+76$
- $y^2=53 x^6+66 x^5+11 x^4+33 x^3+76 x^2+72 x+85$
- $y^2=59 x^6+79 x^5+62 x^4+73 x^3+73 x^2+30 x+62$
- $y^2=43 x^6+45 x^5+8 x^4+54 x^3+2 x^2+74 x+45$
- $y^2=65 x^6+30 x^5+42 x^4+78 x^3+22 x^2+51 x+44$
- $y^2=17 x^6+8 x^5+66 x^4+34 x^3+66 x^2+8 x+17$
- $y^2=56 x^6+52 x^5+64 x^4+87 x^3+64 x^2+52 x+56$
- $y^2=69 x^6+69 x^5+78 x^4+29 x^3+68 x^2+47 x+25$
- $y^2=13 x^6+5 x^5+28 x^4+49 x^3+48 x^2+71 x+52$
- $y^2=17 x^6+33 x^5+25 x^4+72 x^3+83 x^2+12 x+66$
- $y^2=75 x^6+22 x^5+28 x^4+79 x^3+42 x^2+83 x+17$
- $y^2=49 x^6+47 x^5+84 x^4+14 x^3+68 x^2+53 x+34$
- $y^2=54 x^6+26 x^5+62 x^4+50 x^3+15 x^2+48 x+60$
- $y^2=38 x^6+32 x^5+67 x^4+34 x^3+86 x^2+17 x+22$
- $y^2=39 x^6+53 x^5+35 x^4+79 x^3+64 x^2+7 x+58$
- $y^2=70 x^6+31 x^5+2 x^4+56 x^3+44 x^2+52 x+74$
- and 43 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The isogeny class factors as 1.89.am 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-53}) \)$)$ |
Base change
This is a primitive isogeny class.