# Stored data for abelian variety isogeny class 2.89.ay_mk, downloaded from the LMFDB on 03 September 2025. {"abvar_count": 6084, "abvar_counts": [6084, 63297936, 499065950916, 3938432011997184, 31182221034306245124, 246989639569435862360976, 1956409817437736499851818884, 15496730715064673418020271489024, 122749609684692153405274303910107716, 972299658361786434653453981703642085776], "abvar_counts_str": "6084 63297936 499065950916 3938432011997184 31182221034306245124 246989639569435862360976 1956409817437736499851818884 15496730715064673418020271489024 122749609684692153405274303910107716 972299658361786434653453981703642085776 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.280588346245417, 0.280588346245417], "center_dim": 2, "curve_count": 66, "curve_counts": [66, 7990, 707922, 62771614, 5584149186, 496979753686, 44231308461714, 3936588625313854, 350356403895436098, 31181719948276146550], "curve_counts_str": "66 7990 707922 62771614 5584149186 496979753686 44231308461714 3936588625313854 350356403895436098 31181719948276146550 ", "curves": ["y^2=77*x^6+31*x^5+69*x^4+53*x^3+50*x^2+38*x+54", "y^2=41*x^6+3*x^5+6*x^4+44*x^3+48*x^2+22*x+2", "y^2=85*x^6+80*x^5+38*x^4+2*x^3+76*x^2+53*x+57", "y^2=63*x^6+63*x^5+19*x^4+68*x^3+19*x^2+63*x+63", "y^2=58*x^6+77*x^5+60*x^4+68*x^3+29*x^2+39*x+76", "y^2=53*x^6+66*x^5+11*x^4+33*x^3+76*x^2+72*x+85", "y^2=59*x^6+79*x^5+62*x^4+73*x^3+73*x^2+30*x+62", "y^2=43*x^6+45*x^5+8*x^4+54*x^3+2*x^2+74*x+45", "y^2=65*x^6+30*x^5+42*x^4+78*x^3+22*x^2+51*x+44", "y^2=17*x^6+8*x^5+66*x^4+34*x^3+66*x^2+8*x+17", "y^2=56*x^6+52*x^5+64*x^4+87*x^3+64*x^2+52*x+56", "y^2=69*x^6+69*x^5+78*x^4+29*x^3+68*x^2+47*x+25", "y^2=13*x^6+5*x^5+28*x^4+49*x^3+48*x^2+71*x+52", "y^2=17*x^6+33*x^5+25*x^4+72*x^3+83*x^2+12*x+66", "y^2=75*x^6+22*x^5+28*x^4+79*x^3+42*x^2+83*x+17", "y^2=49*x^6+47*x^5+84*x^4+14*x^3+68*x^2+53*x+34", "y^2=54*x^6+26*x^5+62*x^4+50*x^3+15*x^2+48*x+60", "y^2=38*x^6+32*x^5+67*x^4+34*x^3+86*x^2+17*x+22", "y^2=39*x^6+53*x^5+35*x^4+79*x^3+64*x^2+7*x+58", "y^2=70*x^6+31*x^5+2*x^4+56*x^3+44*x^2+52*x+74", "y^2=17*x^6+29*x^5+34*x^4+47*x^3+68*x^2+27*x+47", "y^2=74*x^6+37*x^5+67*x^4+85*x^3+56*x^2+2*x+82", "y^2=41*x^6+5*x^5+84*x^4+73*x^3+84*x^2+5*x+41", "y^2=31*x^6+84*x^5+51*x^4+82*x^3+40*x^2+75*x+30", "y^2=19*x^6+77*x^5+4*x^4+76*x^3+7*x^2+86*x+61", "y^2=35*x^6+11*x^4+11*x^2+35", "y^2=77*x^6+29*x^5+11*x^4+57*x^3+10*x^2+40*x+74", "y^2=39*x^6+x^5+10*x^4+43*x^3+83*x^2+81*x+19", "y^2=59*x^6+12*x^5+86*x^4+49*x^3+69*x^2+11*x+74", "y^2=67*x^6+62*x^5+78*x^4+23*x^3+78*x^2+62*x+67", "y^2=48*x^6+75*x^5+33*x^4+72*x^3+6*x^2+61*x+70", "y^2=72*x^6+36*x^5+74*x^4+53*x^3+74*x^2+36*x+72", "y^2=44*x^6+76*x^5+69*x^4+49*x^3+61*x^2+23*x+78", "y^2=41*x^6+45*x^5+82*x^4+13*x^3+4*x^2+53*x+19", "y^2=26*x^6+29*x^5+27*x^4+65*x^3+27*x^2+29*x+26", "y^2=22*x^6+64*x^5+38*x^4+77*x^3+63*x^2+56*x+70", "y^2=3*x^6+21*x^5+52*x^4+30*x^3+52*x^2+21*x+3", "y^2=31*x^5+47*x^4+19*x^3+73*x^2+38*x", "y^2=70*x^6+59*x^5+x^4+41*x^3+25*x^2+29*x+29", "y^2=52*x^6+86*x^5+50*x^4+61*x^3+50*x^2+86*x+52", "y^2=7*x^6+12*x^5+38*x^4+78*x^3+33*x^2+40*x+20", "y^2=7*x^6+39*x^5+60*x^4+5*x^3+60*x^2+39*x+7", "y^2=75*x^6+31*x^5+80*x^4+75*x^3+15*x^2+62*x+46", "y^2=3*x^6+34*x^5+72*x^4+61*x^3+68*x^2+10*x+75", "y^2=54*x^6+32*x^5+62*x^4+87*x^3+62*x^2+32*x+54", "y^2=78*x^6+83*x^5+51*x^4+80*x^3+65*x^2+23*x+36", "y^2=41*x^6+53*x^5+54*x^4+70*x^3+84*x+66", "y^2=15*x^6+86*x^5+55*x^4+46*x^3+16*x^2+56*x+48", "y^2=41*x^6+30*x^5+88*x^4+31*x^3+49*x^2+29*x+13", "y^2=15*x^6+76*x^5+65*x^4+61*x^3+41*x^2+37*x+31", "y^2=59*x^6+60*x^5+45*x^4+25*x^3+88*x^2+81*x+60", "y^2=34*x^6+16*x^4+16*x^2+34", "y^2=44*x^6+77*x^5+19*x^4+20*x^3+65*x^2+6*x+84", "y^2=40*x^6+6*x^5+50*x^4+22*x^3+67*x^2+52*x+36", "y^2=66*x^6+73*x^5+15*x^4+83*x^3+65*x^2+16*x+70", "y^2=53*x^6+35*x^5+18*x^4+7*x^3+53*x^2+78*x+60", "y^2=27*x^6+43*x^5+46*x^4+34*x^3+46*x^2+43*x+27", "y^2=6*x^6+20*x^5+86*x^4+52*x^3+88*x^2+12*x+30", "y^2=42*x^6+65*x^5+82*x^4+73*x^3+26*x^2+14*x+2", "y^2=76*x^6+77*x^5+70*x^4+78*x^3+70*x^2+77*x+76", "y^2=23*x^6+50*x^5+50*x^4+11*x^3+82*x^2+36*x+72", "y^2=40*x^6+82*x^5+70*x^4+32*x^3+8*x^2+7*x+66", "y^2=10*x^6+63*x^4+63*x^2+10"], "dim1_distinct": 1, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 2, "galois_groups": ["2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.212.1"], "geometric_splitting_field": "2.0.212.1", "geometric_splitting_polynomials": [[53, 0, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 63, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": false, "is_supersingular": false, "jacobian_count": 63, "label": "2.89.ay_mk", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 6, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.212.1"], "p": 89, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -24, 322, -2136, 7921], "poly_str": "1 -24 322 -2136 7921 ", "primitive_models": [], "q": 89, "real_poly": [1, -24, 144], "simple_distinct": ["1.89.am"], "simple_factors": ["1.89.amA", "1.89.amB"], "simple_multiplicities": [2], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "2.0.212.1", "splitting_polynomials": [[53, 0, 1]], "twist_count": 6, "twists": [["2.89.a_bi", "2.7921.cq_zdu", 2], ["2.89.y_mk", "2.7921.cq_zdu", 2], ["2.89.m_cd", "2.704969.ejo_hwelu", 3], ["2.89.a_abi", "2.62742241.brls_bcsotcw", 4], ["2.89.am_cd", "2.496981290961.adjmca_hpiclnlzy", 6]]}