-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 6084, 'abvar_counts': [6084, 63297936, 499065950916, 3938432011997184, 31182221034306245124, 246989639569435862360976, 1956409817437736499851818884, 15496730715064673418020271489024, 122749609684692153405274303910107716, 972299658361786434653453981703642085776], 'abvar_counts_str': '6084 63297936 499065950916 3938432011997184 31182221034306245124 246989639569435862360976 1956409817437736499851818884 15496730715064673418020271489024 122749609684692153405274303910107716 972299658361786434653453981703642085776 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.280588346245417, 0.280588346245417], 'center_dim': 2, 'curve_count': 66, 'curve_counts': [66, 7990, 707922, 62771614, 5584149186, 496979753686, 44231308461714, 3936588625313854, 350356403895436098, 31181719948276146550], 'curve_counts_str': '66 7990 707922 62771614 5584149186 496979753686 44231308461714 3936588625313854 350356403895436098 31181719948276146550 ', 'curves': ['y^2=77*x^6+31*x^5+69*x^4+53*x^3+50*x^2+38*x+54', 'y^2=41*x^6+3*x^5+6*x^4+44*x^3+48*x^2+22*x+2', 'y^2=85*x^6+80*x^5+38*x^4+2*x^3+76*x^2+53*x+57', 'y^2=63*x^6+63*x^5+19*x^4+68*x^3+19*x^2+63*x+63', 'y^2=58*x^6+77*x^5+60*x^4+68*x^3+29*x^2+39*x+76', 'y^2=53*x^6+66*x^5+11*x^4+33*x^3+76*x^2+72*x+85', 'y^2=59*x^6+79*x^5+62*x^4+73*x^3+73*x^2+30*x+62', 'y^2=43*x^6+45*x^5+8*x^4+54*x^3+2*x^2+74*x+45', 'y^2=65*x^6+30*x^5+42*x^4+78*x^3+22*x^2+51*x+44', 'y^2=17*x^6+8*x^5+66*x^4+34*x^3+66*x^2+8*x+17', 'y^2=56*x^6+52*x^5+64*x^4+87*x^3+64*x^2+52*x+56', 'y^2=69*x^6+69*x^5+78*x^4+29*x^3+68*x^2+47*x+25', 'y^2=13*x^6+5*x^5+28*x^4+49*x^3+48*x^2+71*x+52', 'y^2=17*x^6+33*x^5+25*x^4+72*x^3+83*x^2+12*x+66', 'y^2=75*x^6+22*x^5+28*x^4+79*x^3+42*x^2+83*x+17', 'y^2=49*x^6+47*x^5+84*x^4+14*x^3+68*x^2+53*x+34', 'y^2=54*x^6+26*x^5+62*x^4+50*x^3+15*x^2+48*x+60', 'y^2=38*x^6+32*x^5+67*x^4+34*x^3+86*x^2+17*x+22', 'y^2=39*x^6+53*x^5+35*x^4+79*x^3+64*x^2+7*x+58', 'y^2=70*x^6+31*x^5+2*x^4+56*x^3+44*x^2+52*x+74', 'y^2=17*x^6+29*x^5+34*x^4+47*x^3+68*x^2+27*x+47', 'y^2=74*x^6+37*x^5+67*x^4+85*x^3+56*x^2+2*x+82', 'y^2=41*x^6+5*x^5+84*x^4+73*x^3+84*x^2+5*x+41', 'y^2=31*x^6+84*x^5+51*x^4+82*x^3+40*x^2+75*x+30', 'y^2=19*x^6+77*x^5+4*x^4+76*x^3+7*x^2+86*x+61', 'y^2=35*x^6+11*x^4+11*x^2+35', 'y^2=77*x^6+29*x^5+11*x^4+57*x^3+10*x^2+40*x+74', 'y^2=39*x^6+x^5+10*x^4+43*x^3+83*x^2+81*x+19', 'y^2=59*x^6+12*x^5+86*x^4+49*x^3+69*x^2+11*x+74', 'y^2=67*x^6+62*x^5+78*x^4+23*x^3+78*x^2+62*x+67', 'y^2=48*x^6+75*x^5+33*x^4+72*x^3+6*x^2+61*x+70', 'y^2=72*x^6+36*x^5+74*x^4+53*x^3+74*x^2+36*x+72', 'y^2=44*x^6+76*x^5+69*x^4+49*x^3+61*x^2+23*x+78', 'y^2=41*x^6+45*x^5+82*x^4+13*x^3+4*x^2+53*x+19', 'y^2=26*x^6+29*x^5+27*x^4+65*x^3+27*x^2+29*x+26', 'y^2=22*x^6+64*x^5+38*x^4+77*x^3+63*x^2+56*x+70', 'y^2=3*x^6+21*x^5+52*x^4+30*x^3+52*x^2+21*x+3', 'y^2=31*x^5+47*x^4+19*x^3+73*x^2+38*x', 'y^2=70*x^6+59*x^5+x^4+41*x^3+25*x^2+29*x+29', 'y^2=52*x^6+86*x^5+50*x^4+61*x^3+50*x^2+86*x+52', 'y^2=7*x^6+12*x^5+38*x^4+78*x^3+33*x^2+40*x+20', 'y^2=7*x^6+39*x^5+60*x^4+5*x^3+60*x^2+39*x+7', 'y^2=75*x^6+31*x^5+80*x^4+75*x^3+15*x^2+62*x+46', 'y^2=3*x^6+34*x^5+72*x^4+61*x^3+68*x^2+10*x+75', 'y^2=54*x^6+32*x^5+62*x^4+87*x^3+62*x^2+32*x+54', 'y^2=78*x^6+83*x^5+51*x^4+80*x^3+65*x^2+23*x+36', 'y^2=41*x^6+53*x^5+54*x^4+70*x^3+84*x+66', 'y^2=15*x^6+86*x^5+55*x^4+46*x^3+16*x^2+56*x+48', 'y^2=41*x^6+30*x^5+88*x^4+31*x^3+49*x^2+29*x+13', 'y^2=15*x^6+76*x^5+65*x^4+61*x^3+41*x^2+37*x+31', 'y^2=59*x^6+60*x^5+45*x^4+25*x^3+88*x^2+81*x+60', 'y^2=34*x^6+16*x^4+16*x^2+34', 'y^2=44*x^6+77*x^5+19*x^4+20*x^3+65*x^2+6*x+84', 'y^2=40*x^6+6*x^5+50*x^4+22*x^3+67*x^2+52*x+36', 'y^2=66*x^6+73*x^5+15*x^4+83*x^3+65*x^2+16*x+70', 'y^2=53*x^6+35*x^5+18*x^4+7*x^3+53*x^2+78*x+60', 'y^2=27*x^6+43*x^5+46*x^4+34*x^3+46*x^2+43*x+27', 'y^2=6*x^6+20*x^5+86*x^4+52*x^3+88*x^2+12*x+30', 'y^2=42*x^6+65*x^5+82*x^4+73*x^3+26*x^2+14*x+2', 'y^2=76*x^6+77*x^5+70*x^4+78*x^3+70*x^2+77*x+76', 'y^2=23*x^6+50*x^5+50*x^4+11*x^3+82*x^2+36*x+72', 'y^2=40*x^6+82*x^5+70*x^4+32*x^3+8*x^2+7*x+66', 'y^2=10*x^6+63*x^4+63*x^2+10'], 'dim1_distinct': 1, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'g': 2, 'galois_groups': ['2T1'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.212.1'], 'geometric_splitting_field': '2.0.212.1', 'geometric_splitting_polynomials': [[53, 0, 1]], 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 63, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': False, 'is_squarefree': False, 'is_supersingular': False, 'jacobian_count': 63, 'label': '2.89.ay_mk', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 6, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.212.1'], 'p': 89, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -24, 322, -2136, 7921], 'poly_str': '1 -24 322 -2136 7921 ', 'primitive_models': [], 'q': 89, 'real_poly': [1, -24, 144], 'simple_distinct': ['1.89.am'], 'simple_factors': ['1.89.amA', '1.89.amB'], 'simple_multiplicities': [2], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '2.0.212.1', 'splitting_polynomials': [[53, 0, 1]], 'twist_count': 6, 'twists': [['2.89.a_bi', '2.7921.cq_zdu', 2], ['2.89.y_mk', '2.7921.cq_zdu', 2], ['2.89.m_cd', '2.704969.ejo_hwelu', 3], ['2.89.a_abi', '2.62742241.brls_bcsotcw', 4], ['2.89.am_cd', '2.496981290961.adjmca_hpiclnlzy', 6]]}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.89.ay_mk', 'extension_degree': 1, 'extension_label': '1.89.am', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.212.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.89.am', 'galois_group': '2T1', 'places': [['83', '1'], ['6', '1']]}