L(s) = 1 | + 4-s − 2·7-s − 3·9-s − 2·13-s + 16-s − 6·25-s − 2·28-s − 16·31-s − 3·36-s + 12·37-s + 8·43-s + 3·49-s − 2·52-s + 20·61-s + 6·63-s + 64-s + 8·67-s + 4·73-s + 16·79-s + 9·81-s + 4·91-s + 4·97-s − 6·100-s + 32·103-s − 4·109-s − 2·112-s + 6·117-s + ⋯ |
L(s) = 1 | + 1/2·4-s − 0.755·7-s − 9-s − 0.554·13-s + 1/4·16-s − 6/5·25-s − 0.377·28-s − 2.87·31-s − 1/2·36-s + 1.97·37-s + 1.21·43-s + 3/7·49-s − 0.277·52-s + 2.56·61-s + 0.755·63-s + 1/8·64-s + 0.977·67-s + 0.468·73-s + 1.80·79-s + 81-s + 0.419·91-s + 0.406·97-s − 3/5·100-s + 3.15·103-s − 0.383·109-s − 0.188·112-s + 0.554·117-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 298116 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 298116 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.270689638\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.270689638\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.866721919717987183503254472214, −8.369588935348609600456733576104, −7.80088849136349478139956350243, −7.40803372522333751876994487224, −7.08827055361374002488782088399, −6.19483789697770666814563584573, −6.19217622188912966190136871625, −5.44024157926880829299881771792, −5.21535057877927416914375242112, −4.23885567109427787805557130576, −3.67764363944170895713490289621, −3.27331439299451669391457686232, −2.29694658439320588323627036273, −2.18713180950649411226712364496, −0.62603155646423681877598241271,
0.62603155646423681877598241271, 2.18713180950649411226712364496, 2.29694658439320588323627036273, 3.27331439299451669391457686232, 3.67764363944170895713490289621, 4.23885567109427787805557130576, 5.21535057877927416914375242112, 5.44024157926880829299881771792, 6.19217622188912966190136871625, 6.19483789697770666814563584573, 7.08827055361374002488782088399, 7.40803372522333751876994487224, 7.80088849136349478139956350243, 8.369588935348609600456733576104, 8.866721919717987183503254472214