Properties

Label 182.c
Number of curves $4$
Conductor $182$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 182.c have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(7\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 182.c do not have complex multiplication.

Modular form 182.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 2 q^{5} - q^{7} + q^{8} - 3 q^{9} + 2 q^{10} + 4 q^{11} - q^{13} - q^{14} + q^{16} - 6 q^{17} - 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 182.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
182.c1 182a4 \([1, -1, 1, -59134, 5547693]\) \(22868021811807457713/8953460393696\) \(8953460393696\) \([2]\) \(720\) \(1.4500\)  
182.c2 182a3 \([1, -1, 1, -31294, -2081875]\) \(3389174547561866673/74853681183008\) \(74853681183008\) \([2]\) \(720\) \(1.4500\)  
182.c3 182a2 \([1, -1, 1, -4254, 59693]\) \(8511781274893233/3440817243136\) \(3440817243136\) \([2, 2]\) \(360\) \(1.1034\)  
182.c4 182a1 \([1, -1, 1, 866, 6445]\) \(71903073502287/60782804992\) \(-60782804992\) \([4]\) \(180\) \(0.75686\) \(\Gamma_0(N)\)-optimal