Properties

Label 182.2.a.c
Level $182$
Weight $2$
Character orbit 182.a
Self dual yes
Analytic conductor $1.453$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [182,2,Mod(1,182)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(182, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("182.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 182 = 2 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 182.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.45327731679\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + q^{4} + 2 q^{5} - q^{7} + q^{8} - 3 q^{9} + 2 q^{10} + 4 q^{11} - q^{13} - q^{14} + q^{16} - 6 q^{17} - 3 q^{18} + 2 q^{20} + 4 q^{22} + 8 q^{23} - q^{25} - q^{26} - q^{28} - 10 q^{29}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 1.00000 2.00000 0 −1.00000 1.00000 −3.00000 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 182.2.a.c 1
3.b odd 2 1 1638.2.a.c 1
4.b odd 2 1 1456.2.a.i 1
5.b even 2 1 4550.2.a.g 1
7.b odd 2 1 1274.2.a.l 1
7.c even 3 2 1274.2.f.f 2
7.d odd 6 2 1274.2.f.g 2
8.b even 2 1 5824.2.a.l 1
8.d odd 2 1 5824.2.a.m 1
13.b even 2 1 2366.2.a.d 1
13.d odd 4 2 2366.2.d.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
182.2.a.c 1 1.a even 1 1 trivial
1274.2.a.l 1 7.b odd 2 1
1274.2.f.f 2 7.c even 3 2
1274.2.f.g 2 7.d odd 6 2
1456.2.a.i 1 4.b odd 2 1
1638.2.a.c 1 3.b odd 2 1
2366.2.a.d 1 13.b even 2 1
2366.2.d.d 2 13.d odd 4 2
4550.2.a.g 1 5.b even 2 1
5824.2.a.l 1 8.b even 2 1
5824.2.a.m 1 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(182))\):

\( T_{3} \) Copy content Toggle raw display
\( T_{5} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 2 \) Copy content Toggle raw display
$7$ \( T + 1 \) Copy content Toggle raw display
$11$ \( T - 4 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T + 6 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T - 8 \) Copy content Toggle raw display
$29$ \( T + 10 \) Copy content Toggle raw display
$31$ \( T + 8 \) Copy content Toggle raw display
$37$ \( T - 6 \) Copy content Toggle raw display
$41$ \( T + 6 \) Copy content Toggle raw display
$43$ \( T - 4 \) Copy content Toggle raw display
$47$ \( T + 8 \) Copy content Toggle raw display
$53$ \( T - 6 \) Copy content Toggle raw display
$59$ \( T - 8 \) Copy content Toggle raw display
$61$ \( T - 10 \) Copy content Toggle raw display
$67$ \( T - 4 \) Copy content Toggle raw display
$71$ \( T + 8 \) Copy content Toggle raw display
$73$ \( T - 2 \) Copy content Toggle raw display
$79$ \( T - 8 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T - 18 \) Copy content Toggle raw display
$97$ \( T - 2 \) Copy content Toggle raw display
show more
show less