| L(s) = 1 | + 3-s − 4·7-s + 9-s + 4·13-s − 4·21-s + 2·25-s + 27-s − 4·31-s + 12·37-s + 4·39-s + 16·43-s + 2·49-s + 12·61-s − 4·63-s − 8·67-s − 12·73-s + 2·75-s + 12·79-s + 81-s − 16·91-s − 4·93-s + 20·97-s + 4·103-s − 12·109-s + 12·111-s + 4·117-s + 10·121-s + ⋯ |
| L(s) = 1 | + 0.577·3-s − 1.51·7-s + 1/3·9-s + 1.10·13-s − 0.872·21-s + 2/5·25-s + 0.192·27-s − 0.718·31-s + 1.97·37-s + 0.640·39-s + 2.43·43-s + 2/7·49-s + 1.53·61-s − 0.503·63-s − 0.977·67-s − 1.40·73-s + 0.230·75-s + 1.35·79-s + 1/9·81-s − 1.67·91-s − 0.414·93-s + 2.03·97-s + 0.394·103-s − 1.14·109-s + 1.13·111-s + 0.369·117-s + 0.909·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 110592 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110592 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.661003709\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.661003709\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.504024617905535080647203852869, −9.067934545196342652630769302186, −8.636762976476172008522006914667, −8.071854972236262273967042243403, −7.46055155905040860492007765193, −7.10903378476657829949046346245, −6.33267265462514082436294446375, −6.11670254118639432574587642139, −5.58586368800518741039512099475, −4.62117120988054588600033149541, −4.04478786960708107415819508176, −3.47830956390207787315042010264, −2.94277063261891989936099091514, −2.22069649550968692930562379278, −0.932080823606449935988037201507,
0.932080823606449935988037201507, 2.22069649550968692930562379278, 2.94277063261891989936099091514, 3.47830956390207787315042010264, 4.04478786960708107415819508176, 4.62117120988054588600033149541, 5.58586368800518741039512099475, 6.11670254118639432574587642139, 6.33267265462514082436294446375, 7.10903378476657829949046346245, 7.46055155905040860492007765193, 8.071854972236262273967042243403, 8.636762976476172008522006914667, 9.067934545196342652630769302186, 9.504024617905535080647203852869