Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 8 x + 79 x^{2} )( 1 - 4 x + 79 x^{2} )$ |
| $1 - 12 x + 190 x^{2} - 948 x^{3} + 6241 x^{4}$ | |
| Frobenius angles: | $\pm0.351411445414$, $\pm0.427756044762$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $210$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5472$ | $40449024$ | $244207879776$ | $1516951657267200$ | $9467719974285689952$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $68$ | $6478$ | $495308$ | $38946046$ | $3076875668$ | $243086730766$ | $19203916647452$ | $1517108893400446$ | $119851595969779172$ | $9468276078395046478$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 210 curves (of which all are hyperelliptic):
- $y^2=67 x^6+19 x^5+15 x^4+35 x^3+14 x^2+67 x+24$
- $y^2=25 x^6+34 x^5+77 x^4+50 x^3+61 x^2+68 x+55$
- $y^2=68 x^6+14 x^5+69 x^4+44 x^3+33 x^2+14 x+60$
- $y^2=11 x^6+12 x^5+4 x^4+20 x^3+4 x^2+12 x+11$
- $y^2=64 x^6+22 x^5+35 x^4+52 x^3+35 x^2+22 x+64$
- $y^2=14 x^6+71 x^5+66 x^4+37 x^3+66 x^2+57 x+11$
- $y^2=70 x^6+11 x^5+6 x^4+67 x^3+77 x^2+10 x+53$
- $y^2=43 x^6+12 x^5+63 x^4+74 x^3+76 x^2+12 x+32$
- $y^2=60 x^6+29 x^5+40 x^4+53 x^3+23 x^2+60 x+6$
- $y^2=21 x^6+7 x^5+72 x^4+48 x^3+40 x^2+48 x+1$
- $y^2=61 x^6+34 x^5+18 x^4+21 x^3+18 x^2+34 x+61$
- $y^2=67 x^6+70 x^5+3 x^4+61 x^3+3 x^2+62 x+27$
- $y^2=12 x^6+64 x^5+30 x^4+61 x^3+30 x^2+64 x+12$
- $y^2=62 x^6+25 x^5+43 x^4+24 x^3+51 x^2+13 x+61$
- $y^2=x^6+49 x^5+53 x^4+22 x^3+53 x^2+49 x+1$
- $y^2=70 x^6+43 x^5+15 x^4+8 x^3+19 x^2+22 x+44$
- $y^2=35 x^6+26 x^5+61 x^4+21 x^3+37 x^2+45 x+35$
- $y^2=4 x^6+53 x^5+48 x^4+6 x^3+58 x^2+66 x+9$
- $y^2=11 x^6+2 x^5+47 x^4+4 x^3+47 x^2+2 x+11$
- $y^2=73 x^6+21 x^5+69 x^4+24 x^3+47 x^2+76 x+5$
- and 190 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$| The isogeny class factors as 1.79.ai $\times$ 1.79.ae and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.