Invariants
| Base field: | $\F_{31}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 31 x^{2} )( 1 + 4 x + 31 x^{2} )$ |
| $1 + 4 x + 62 x^{2} + 124 x^{3} + 961 x^{4}$ | |
| Frobenius angles: | $\pm0.5$, $\pm0.616954024641$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $72$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
| $p$-rank: | $1$ |
| Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1152$ | $1032192$ | $878387328$ | $850939084800$ | $819923911604352$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $36$ | $1070$ | $29484$ | $921406$ | $28639476$ | $887527982$ | $27512435196$ | $852890999806$ | $26439620469444$ | $819628294912430$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=5 x^6+15 x^5+8 x^4+15 x^3+28 x^2+21 x+9$
- $y^2=11 x^6+29 x^5+25 x^4+x^3+25 x^2+29 x+11$
- $y^2=10 x^6+12 x^5+29 x^4+18 x^3+5 x^2+22 x+9$
- $y^2=14 x^6+7 x^5+4 x^4+14 x^3+4 x^2+7 x+14$
- $y^2=8 x^6+17 x^5+27 x^4+21 x^3+27 x^2+17 x+8$
- $y^2=29 x^6+x^5+20 x^4+x^3+5 x^2+8 x+17$
- $y^2=8 x^6+9 x^5+7 x^4+2 x^3+21 x^2+24 x+5$
- $y^2=19 x^6+2 x^5+14 x^4+23 x^3+27 x^2+15 x+20$
- $y^2=14 x^6+17 x^5+2 x^4+16 x^3+4 x^2+6 x+19$
- $y^2=16 x^6+28 x^5+23 x^4+23 x^3+23 x^2+28 x+16$
- $y^2=11 x^6+13 x^5+13 x^4+x^3+10 x^2+27 x+20$
- $y^2=9 x^6+3 x^5+20 x^4+16 x^3+10 x^2+24 x+5$
- $y^2=10 x^6+5 x^5+27 x^4+24 x^3+27 x^2+5 x+10$
- $y^2=3 x^6+15 x^5+12 x^4+21 x^3+12 x^2+15 x+3$
- $y^2=15 x^6+18 x^5+25 x^4+2 x^3+25 x^2+18 x+15$
- $y^2=9 x^6+2 x^5+27 x^4+13 x^3+27 x^2+12 x+23$
- $y^2=7 x^6+7 x^5+21 x^4+5 x^3+16 x^2+10 x+10$
- $y^2=5 x^6+30 x^5+12 x^4+12 x^3+21 x^2+26 x+5$
- $y^2=18 x^6+13 x^5+25 x^4+17 x^3+25 x^2+13 x+18$
- $y^2=3 x^6+5 x^5+8 x^4+23 x^3+x^2+3 x+9$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31^{2}}$.
Endomorphism algebra over $\F_{31}$| The isogeny class factors as 1.31.a $\times$ 1.31.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{31^{2}}$ is 1.961.bu $\times$ 1.961.ck. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.