Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 10 x + 37 x^{2} )( 1 - 2 x + 37 x^{2} )$ |
| $1 - 12 x + 94 x^{2} - 444 x^{3} + 1369 x^{4}$ | |
| Frobenius angles: | $\pm0.192861133077$, $\pm0.447431543289$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $120$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1008$ | $1935360$ | $2582263152$ | $3512291328000$ | $4808883042271728$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $26$ | $1414$ | $50978$ | $1874062$ | $69348266$ | $2565871126$ | $94932720818$ | $3512478024478$ | $129961701691706$ | $4808584226024614$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=8 x^6+15 x^5+30 x^4+23 x^3+18 x^2+15 x+23$
- $y^2=22 x^6+33 x^5+13 x^4+17 x^3+34 x^2+11 x+23$
- $y^2=9 x^6+35 x^5+19 x^4+3 x^3+31 x^2+8 x+25$
- $y^2=18 x^6+11 x^5+10 x^4+13 x^3+34 x^2+28 x+32$
- $y^2=23 x^6+24 x^5+29 x^4+7 x^3+29 x^2+24 x+23$
- $y^2=29 x^6+2 x^5+20 x^4+24 x^3+6 x^2+32 x+6$
- $y^2=4 x^6+28 x^5+7 x^4+5 x^3+18 x^2+6$
- $y^2=6 x^6+10 x^5+6 x^4+23 x^3+18 x^2+24 x+2$
- $y^2=18 x^6+5 x^5+19 x^4+32 x^3+22 x^2+22 x+9$
- $y^2=28 x^6+36 x^5+32 x^4+15 x^3+11 x^2+5 x+22$
- $y^2=6 x^6+19 x^5+33 x^4+20 x^3+35 x^2+23 x+29$
- $y^2=16 x^6+34 x^5+23 x^4+24 x^3+25 x^2+20 x$
- $y^2=34 x^6+18 x^5+10 x^3+18 x+34$
- $y^2=32 x^6+33 x^5+27 x^4+19 x^3+7 x^2+x+13$
- $y^2=2 x^6+31 x^5+31 x^4+14 x^3+23 x^2+3 x+22$
- $y^2=31 x^6+26 x^5+23 x^4+x^3+13 x^2+26 x+29$
- $y^2=29 x^6+24 x^5+30 x^4+24 x^3+26 x^2+19 x+36$
- $y^2=13 x^6+12 x^5+4 x^4+26 x^3+28 x^2+34 x+11$
- $y^2=24 x^6+5 x^5+34 x^4+17 x^3+9 x^2+8 x+18$
- $y^2=16 x^6+6 x^5+28 x^4+30 x^3+36 x^2+22 x+12$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$| The isogeny class factors as 1.37.ak $\times$ 1.37.ac and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.