L(s) = 1 | − 2-s + 4-s + 4·5-s + 2·7-s − 8-s − 4·10-s − 8·13-s − 2·14-s + 16-s − 4·17-s + 2·19-s + 4·20-s − 6·23-s + 3·25-s + 8·26-s + 2·28-s + 4·29-s + 2·31-s − 32-s + 4·34-s + 8·35-s + 2·37-s − 2·38-s − 4·40-s − 14·41-s − 22·43-s + 6·46-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 1.78·5-s + 0.755·7-s − 0.353·8-s − 1.26·10-s − 2.21·13-s − 0.534·14-s + 1/4·16-s − 0.970·17-s + 0.458·19-s + 0.894·20-s − 1.25·23-s + 3/5·25-s + 1.56·26-s + 0.377·28-s + 0.742·29-s + 0.359·31-s − 0.176·32-s + 0.685·34-s + 1.35·35-s + 0.328·37-s − 0.324·38-s − 0.632·40-s − 2.18·41-s − 3.35·43-s + 0.884·46-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.1830201225, −12.8214281252, −11.9598790235, −11.9118486001, −11.4654293297, −11.1128063228, −10.1152647782, −9.98703221781, −9.87204525884, −9.79241457837, −8.86377903873, −8.35941284278, −8.26804890939, −7.61059019835, −6.87645619133, −6.73860900675, −6.31538067807, −5.37363015538, −5.30469420615, −4.84789482589, −4.10619268148, −3.14627859790, −2.44850978333, −1.95251803353, −1.64550789318, 0,
1.64550789318, 1.95251803353, 2.44850978333, 3.14627859790, 4.10619268148, 4.84789482589, 5.30469420615, 5.37363015538, 6.31538067807, 6.73860900675, 6.87645619133, 7.61059019835, 8.26804890939, 8.35941284278, 8.86377903873, 9.79241457837, 9.87204525884, 9.98703221781, 10.1152647782, 11.1128063228, 11.4654293297, 11.9118486001, 11.9598790235, 12.8214281252, 13.1830201225