Properties

Label 4-72e3-1.1-c1e2-0-24
Degree $4$
Conductor $373248$
Sign $-1$
Analytic cond. $23.7986$
Root an. cond. $2.20870$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 4·5-s + 2·7-s − 8-s − 4·10-s − 8·13-s − 2·14-s + 16-s − 4·17-s + 2·19-s + 4·20-s − 6·23-s + 3·25-s + 8·26-s + 2·28-s + 4·29-s + 2·31-s − 32-s + 4·34-s + 8·35-s + 2·37-s − 2·38-s − 4·40-s − 14·41-s − 22·43-s + 6·46-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.78·5-s + 0.755·7-s − 0.353·8-s − 1.26·10-s − 2.21·13-s − 0.534·14-s + 1/4·16-s − 0.970·17-s + 0.458·19-s + 0.894·20-s − 1.25·23-s + 3/5·25-s + 1.56·26-s + 0.377·28-s + 0.742·29-s + 0.359·31-s − 0.176·32-s + 0.685·34-s + 1.35·35-s + 0.328·37-s − 0.324·38-s − 0.632·40-s − 2.18·41-s − 3.35·43-s + 0.884·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(373248\)    =    \(2^{9} \cdot 3^{6}\)
Sign: $-1$
Analytic conductor: \(23.7986\)
Root analytic conductor: \(2.20870\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 373248,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_1$ \( 1 + T \)
3 \( 1 \)
good5$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 - T + p T^{2} ) \) 2.5.ae_n
7$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + T + p T^{2} ) \) 2.7.ac_l
11$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) 2.11.a_n
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \) 2.13.i_bq
17$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.17.e_bi
19$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \) 2.19.ac_bm
23$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.23.g_bu
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.29.ae_bu
31$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) 2.31.ac_bv
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \) 2.37.ac_cw
41$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.41.o_fa
43$C_2$$\times$$C_2$ \( ( 1 + 10 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.43.w_hy
47$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.47.g_w
53$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.53.ae_cj
59$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \) 2.59.am_eo
61$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) 2.61.ai_es
67$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 12 T + p T^{2} ) \) 2.67.aba_lq
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.71.m_fm
73$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 7 T + p T^{2} ) \) 2.73.ac_df
79$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.79.e_ck
83$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) 2.83.m_hl
89$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 18 T + p T^{2} ) \) 2.89.w_jq
97$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 9 T + p T^{2} ) \) 2.97.k_hv
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.1830201225, −12.8214281252, −11.9598790235, −11.9118486001, −11.4654293297, −11.1128063228, −10.1152647782, −9.98703221781, −9.87204525884, −9.79241457837, −8.86377903873, −8.35941284278, −8.26804890939, −7.61059019835, −6.87645619133, −6.73860900675, −6.31538067807, −5.37363015538, −5.30469420615, −4.84789482589, −4.10619268148, −3.14627859790, −2.44850978333, −1.95251803353, −1.64550789318, 0, 1.64550789318, 1.95251803353, 2.44850978333, 3.14627859790, 4.10619268148, 4.84789482589, 5.30469420615, 5.37363015538, 6.31538067807, 6.73860900675, 6.87645619133, 7.61059019835, 8.26804890939, 8.35941284278, 8.86377903873, 9.79241457837, 9.87204525884, 9.98703221781, 10.1152647782, 11.1128063228, 11.4654293297, 11.9118486001, 11.9598790235, 12.8214281252, 13.1830201225

Graph of the $Z$-function along the critical line