Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 14 x + 67 x^{2} )( 1 - 12 x + 67 x^{2} )$ |
$1 - 26 x + 302 x^{2} - 1742 x^{3} + 4489 x^{4}$ | |
Frobenius angles: | $\pm0.173442769152$, $\pm0.238111713333$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $18$ |
Isomorphism classes: | 72 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3024$ | $19837440$ | $90685807632$ | $406350120960000$ | $1823010484231301904$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $42$ | $4418$ | $301518$ | $20165134$ | $1350253002$ | $90459112466$ | $6060712993230$ | $406067652984286$ | $27206534036325546$ | $1822837801752842018$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=44 x^6+3 x^5+32 x^4+4 x^3+31 x^2+53 x+30$
- $y^2=40 x^6+49 x^5+52 x^4+23 x^3+52 x^2+49 x+40$
- $y^2=53 x^6+59 x^5+6 x^4+7 x^3+6 x^2+59 x+53$
- $y^2=42 x^6+50 x^5+27 x^4+46 x^3+31 x^2+7 x+27$
- $y^2=7 x^6+17 x^5+55 x^4+35 x^3+54 x^2+26 x+7$
- $y^2=22 x^6+56 x^5+10 x^4+30 x^3+14 x^2+24 x+40$
- $y^2=61 x^6+50 x^5+11 x^4+20 x^3+11 x^2+50 x+61$
- $y^2=61 x^6+46 x^5+33 x^4+58 x^3+25 x^2+28 x+2$
- $y^2=28 x^6+21 x^4+52 x^3+21 x^2+28$
- $y^2=57 x^6+53 x^5+5 x^4+36 x^3+20 x^2+44 x+30$
- $y^2=38 x^6+64 x^5+22 x^4+17 x^3+22 x^2+64 x+38$
- $y^2=66 x^6+7 x^5+58 x^4+30 x^3+58 x^2+7 x+66$
- $y^2=5 x^6+56 x^5+45 x^4+23 x^3+7 x^2+40 x+8$
- $y^2=30 x^6+50 x^5+48 x^4+36 x^3+66 x^2+38 x+28$
- $y^2=43 x^6+62 x^5+4 x^4+59 x^3+4 x^2+62 x+43$
- $y^2=3 x^6+29 x^5+29 x^4+57 x^3+39 x^2+64 x+5$
- $y^2=5 x^6+13 x^5+37 x^4+44 x^3+37 x^2+13 x+5$
- $y^2=42 x^6+20 x^5+61 x^4+48 x^3+61 x^2+20 x+42$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The isogeny class factors as 1.67.ao $\times$ 1.67.am and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.ac_abi | $2$ | (not in LMFDB) |
2.67.c_abi | $2$ | (not in LMFDB) |
2.67.ba_lq | $2$ | (not in LMFDB) |