L-function data
Analytic rank: | \(1\) | ||||||||||||||||||||||||||||||
Mordell-Weil rank: | \(1\) | ||||||||||||||||||||||||||||||
Bad L-factors: |
| ||||||||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||||||||
See L-function page for more information |
Sato-Tate group
\(\mathrm{ST} =\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\times\mathrm{SU}(2)\)
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 6912.o
Elliptic curve isogeny class 54.a
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism algebra over \(\Q\):
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).
More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.
Genus 2 curves in isogeny class 373248.a
Label | Equation |
---|---|
373248.a.373248.1 | \(y^2 + x^2y = x^6 - 7x^4 + 12x^2 - 2\) |